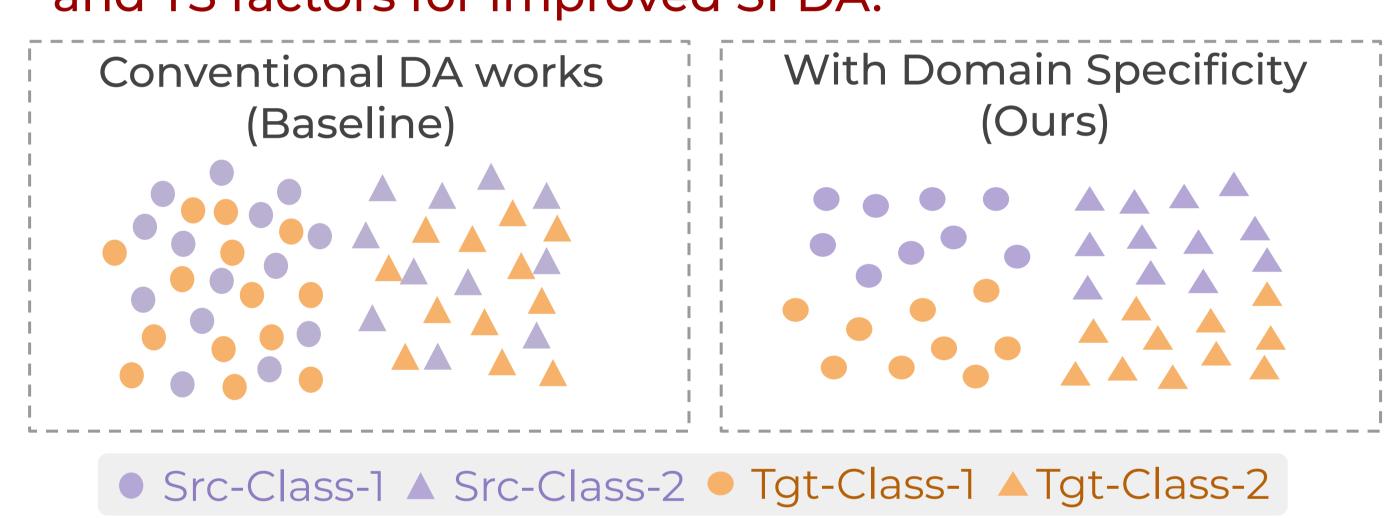


Domain-Specificity-inducing Transformers for Source-Free Domain Adaptation

Sunandini Sanyal*, Ashish Ramayee Asokan*, Suvaansh Bhambri*, Akshay Kulkarni, Jogendra Nath Kundu, R. Venkatesh Babu Vision and Al Lab, Indian Institute of Science, Bangalore, India

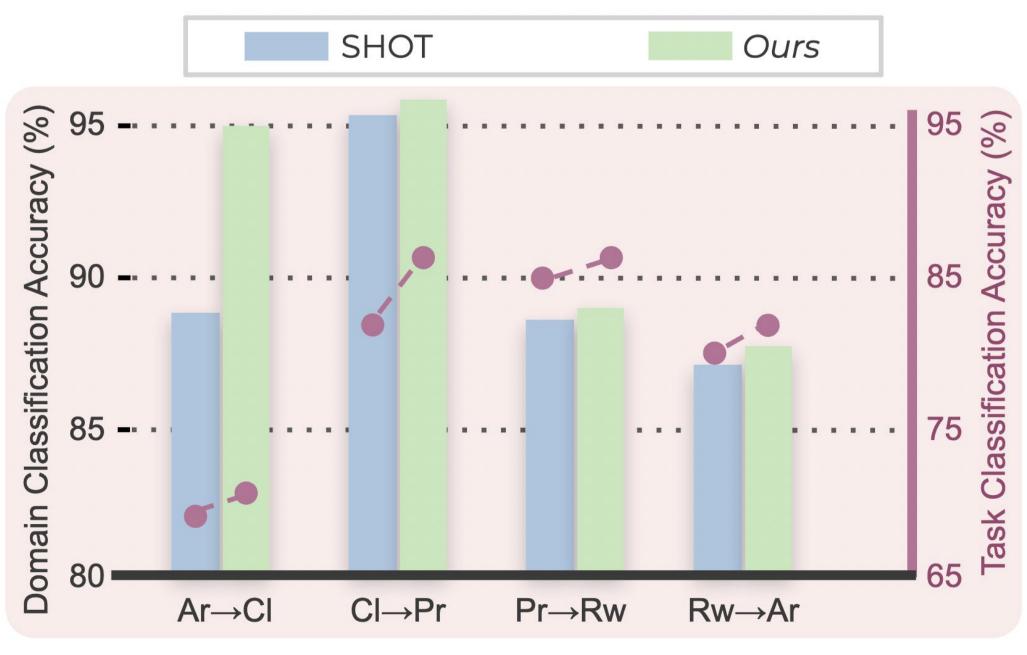
Introduction

- DA requires learning of two types of features:
 - Task-specific (TS) factors → goal task-oriented features that generalize across domains
 - Domain-specific (DS) factors → crucial in-domain characteristic knowledge
- Conventional DA methods focus on domain-invariant (DI) learning by aligning TS factors only
 - Limitations: Does not guarantee optimal performance as distance b/w the DI model and the support of a DS model is large.
- We motivate disentanglement and learning of both DS and TS factors for improved SFDA.



Key Insights

- Insight 1 → Domain-specificity leads to improved DA
 - An in-domain-trained model better represents domain-specific characteristics
- Insight 2 → Disentanglement of DS and TS factors enables better control over them

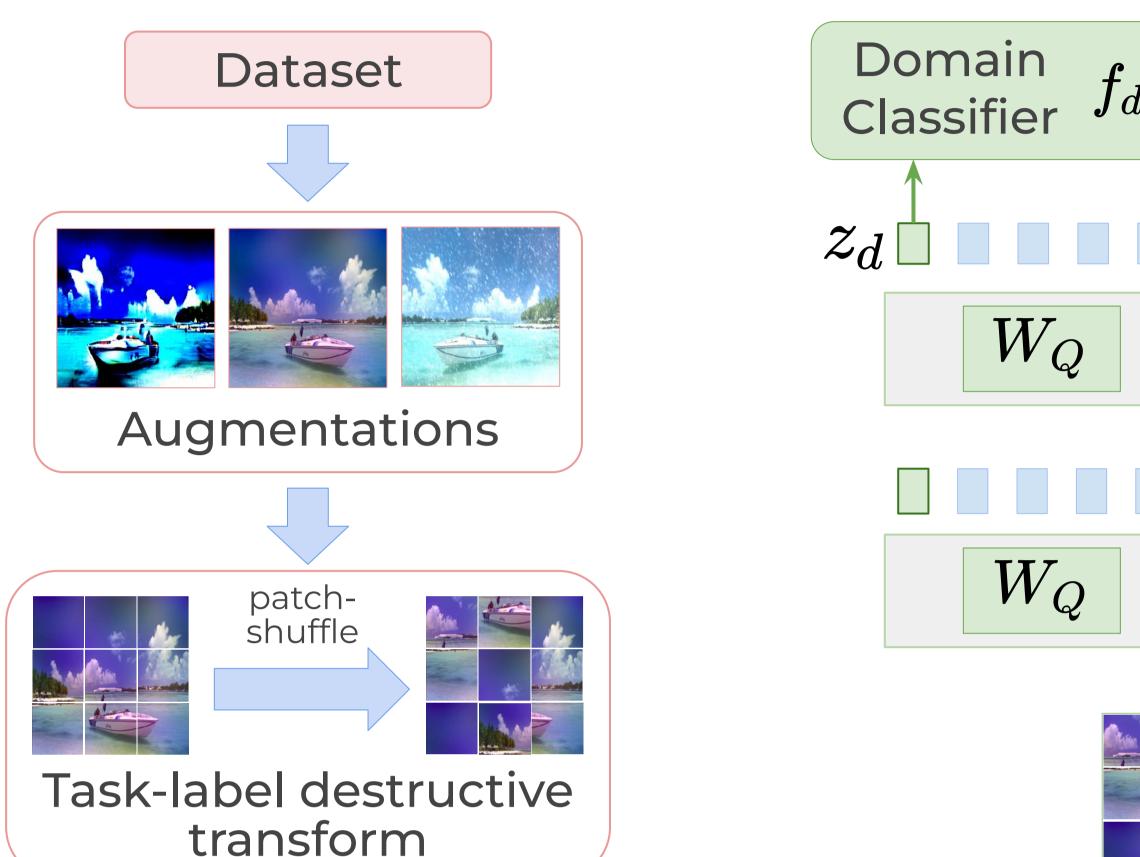


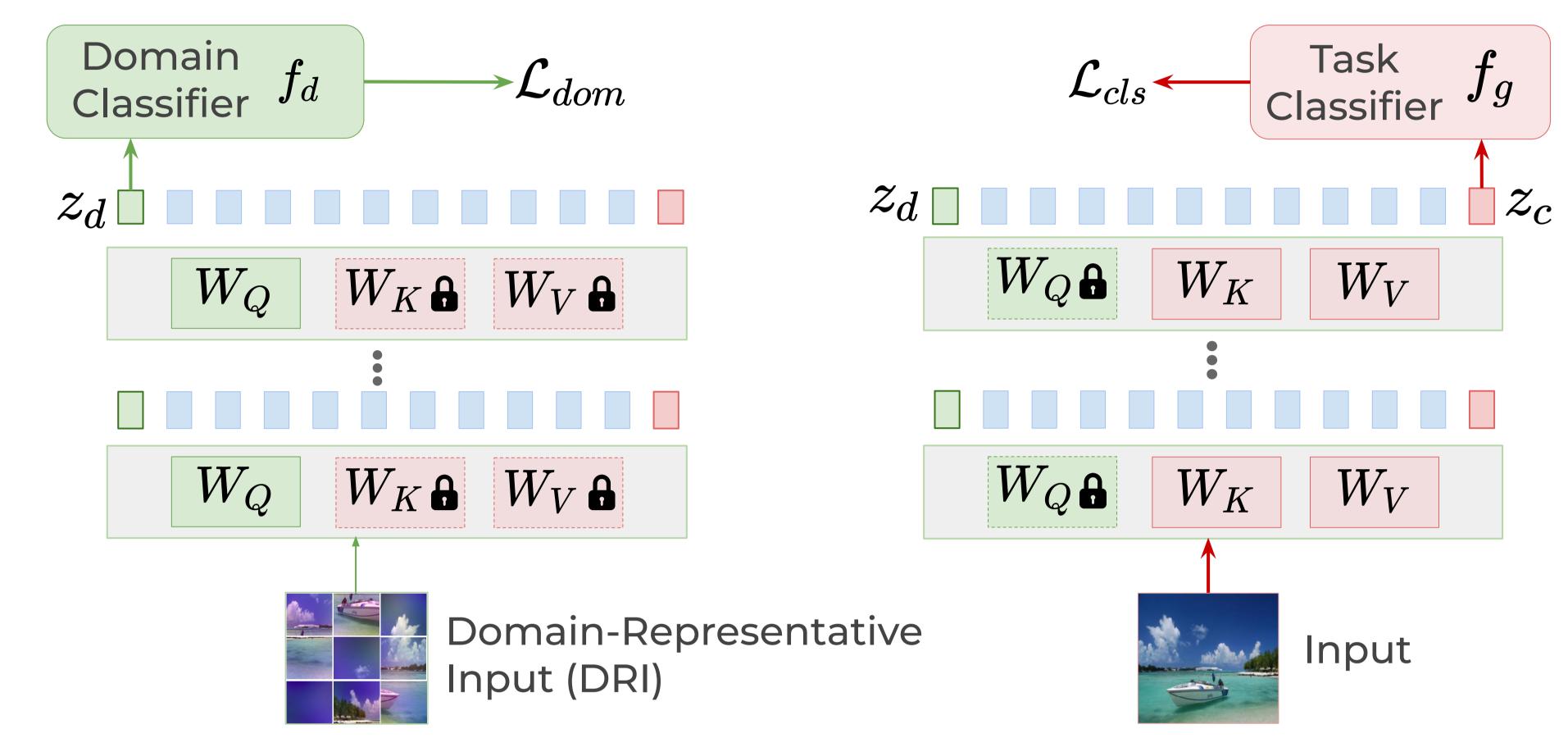
We demonstrate better source-target separation (blue, green) and better task-specificity (pink)

Approach: Domain-Specificity-inducing Transformer (DSiT)

A. DRI Dataset Extraction

B. Domain-Specificity Disentanglement C. Domain-Specific Goal Task Training





Vendor side training

ullet Goal task training o Train W_K, W_V, z_C , and f_g using \mathcal{L}_{cls} on the source domain

$$\min_{\theta_h \setminus \theta_Q, \theta_{fg}} \mathbb{E}_{(x_s, y_s) \in \mathcal{D}_s} [\mathcal{L}_{cls}] \text{ where } \mathcal{L}_{cls} = \mathcal{L}_{ce}(f_g(z_c), y_c)$$

ullet Domain-specificity Disentanglement o Train $W_Q, z_d,$ and f_d using \mathcal{L}_{dom} on the source domain

$$\min_{\theta_Q, \theta_{f_d}} \mathbb{E}_{(x, y_d) \in \cup_i \mathcal{D}_s^{(i)}} [\mathcal{L}_{dom}] \text{ where } \mathcal{L}_{dom} = \mathcal{L}_{ce}(f_d(z_d), y_d)$$

Client side training

ullet Goal task training o Train $W_K, W_V, z_C,$ and f_g using Information Maximization on the target domain

$$\min_{ heta_h \setminus heta_Q, f_g} \mathop{\mathbb{E}}_{\mathcal{D}_t} [\mathcal{L}_{ent} + \mathcal{L}_{div}]$$

ullet Domain-specificity Disentanglement o Train $W_Q, z_d,$ and f_d using \mathcal{L}_{dom} on the target domain

$$\min_{\theta_Q, \theta_{f_d}} \mathbb{E}_{(x, y_d) \in \cup_i \mathcal{D}_s^{(i)}} [\mathcal{L}_{dom}] \text{ where } \mathcal{L}_{dom} = \mathcal{L}_{ce}(f_d(z_d), y_d)$$

Results on Single-source DA

Method	SF	ОН	O-31	VisDA
TVT (WACV'23)	X	83.5	93.8	83.9
SSRT-B (CVPR'22)	X	85.4	93.5	88.7
CDTrans (ICLR'22)	X	80.5	92.6	88.4
SHOT-B (ICML'20)	/	78.1	90.5	82.8
DIPE (CVPR'22)	1	78.2	91.7	86.3
Mixup (ICML'22)	/	78.5	91.4	85.9
DSiT (Ours)	√	80.5	93.0	87.6

Results on Multi-source DA (OH)

Method	SF	Avg.
Source-combine	X	66.9
SImpAl (NeurIPS'20)	X	72.2
SHOT (ICML'20)	√	74.3
SHOT++ (TPAMI'21)	/	75.7
CAiDA (NeurIPS'21)	√	76.2
SHOT-B*	√	83.7
DSiT-B (Ours)	/	84.7

Results on Multi-target DA (OH)

Method	SF	Avg.
MT-MTDA (WACV'21)	X	64.3
CDAN+DCL (NeurIPS'17)	X	64.1
D-CGCT (CVPR'21)	X	69.8
D-CGCT-B (CVPR'21)	X	78.6
SHOT-B (ICML'20)	/	76.4
DSiT (Ours)	√	78.3

We demonstrate gains over SOTA methods across single-source, multi-source, and multi-target DA

Acknowledgements: This work was supported by a research grant from the Kotak IISc Al-ML Centre (KIAC)