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Abstract

Human motion prediction model has applications in various
fields of computer vision. Without taking into account the in-
herent stochasticity in the prediction of future pose dynamics,
such methods often converges to a deterministic undesired
mean of multiple probable outcomes. Devoid of this, we pro-
pose a novel probabilistic generative approach called Bidirec-
tional Human motion prediction GAN, or BiHMP-GAN. To
be able to generate multiple probable human-pose sequences,
conditioned on a given starting sequence, we introduce a ran-
dom extrinsic factor r, drawn from a predefined prior distri-
bution. Furthermore, to enforce a direct content loss on the
predicted motion sequence and also to avoid mode-collapse,
a novel bidirectional framework is incorporated by modify-
ing the usual discriminator architecture. The discriminator is
trained also to regress this extrinsic factor r, which is used
alongside with the intrinsic factor (encoded starting pose se-
quence) to generate a particular pose sequence. To further
regularize the training, we introduce a novel recursive predic-
tion strategy. In spite of being in a probabilistic framework,
the enhanced discriminator architecture allows predictions of
an intermediate part of pose sequence to be used as a condi-
tioning for prediction of the latter part of the sequence. The
bidirectional setup also provides a new direction to evaluate
the prediction quality against a given test sequence. For a fair
assessment of BiHMP-GAN, we report performance of the
generated motion sequence using (i) a critic model trained to
discriminate between real and fake motion sequence, and (ii)
an action classifier trained on real human motion dynamics.
Outcomes of both qualitative and quantitative evaluations, on
the probabilistic generations of the model, demonstrate the
superiority of BiHMP-GAN over previously available meth-
ods.

Introduction
Seamless interaction of robot or AI systems with urban en-
vironment dominated by human beings requires certain be-
haviour prediction abilities. In this work, the focus is on
understanding the dynamics of human pose. For example,
the ability to predict pedestrian behaviour in an urban road
scene is very crucial for autonomous driving systems to
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Figure 1: Mean average prediction error on Human 3.6M
for different motion prediction methods. The blue and green
band for BiHMP-GAN and HP-GAN respectively, show un-
certainty in the prediction of future motion as compared to
other deterministic approaches.

prevent potential accidents. Other examples include inter-
action of robots with humans; such as handshaking, catch-
ing or holding objects thrown by other person etc. More-
over the artificial systems must develop the ability to under-
stand the general trends of human pose dynamics for effec-
tive and coherent interactions (Koppula and Saxena 2013).
Humans develop such ability by observing actions or pose
dynamics of other persons over time. Creating a system
which models such diverse human actions is the prime mo-
tive towards achieving an efficient human motion prediction
model (Mainprice and Berenson 2013).

The goal is to develop a model, which can predict plausi-
ble 3D human pose sequence from a given past dynamics of
a certain time period. However, prediction of future pose se-
quence should not be modeled as a deterministic approach as
there can be multiple plausible limb variations conditioned
on the past motion dynamics. Since, the uncertainty in prob-
able future pose increases with increase in time, a determin-
istic model cannot be considered reliable for long-term pre-
dictions. For example a person running may slow down to
stop or keep running at a different speed. Although such
variations are present in the available human motion dataset,
some pose dynamics are more probable than other. Hence,
the model should have the flexibility to model such stochas-
ticity in the prediction of future pose sequence.

With the advent of deep learning for sequence-to-
sequence (Sutskever, Vinyals, and Le 2014) modeling, many
recent works use variants of deep recurrent neural networks



for human motion prediction and synthesis (Ghosh et al.
2017; Li et al. 2017). According to the analysis performed
by Martinez et al. (Martinez, Black, and Romero 2017), ear-
lier motion prediction methods (Taylor, Hinton, and Roweis
2007) show a catastrophic drift in the prediction of imme-
diate future frame conditioned on past motion sequence.
They proposed to solve it by utilizing the recurrent network
to predict the residue on past frame instead of directly es-
timating the next frame parameters. However most of the
recent works in human motion prediction (Li et al. 2018;
Butepage et al. 2017) do not model the inherent stochasticity
in the fore-casted pose sequence. In such scenario, the model
predicts a deterministic undesired mean of multiple prob-
able pose dynamics, which often leads to suboptimal per-
formance. We address this issue by introducing a randomly
sampled vector (or an extrinsic factor) along with the latent
representation of encoded past frames - the intrinsic repre-
sentation. We consider the combination of these two factors
as the input to a generative decoder architecture. This makes
our framework a truly probabilistic generative approach for
human motion prediction.

Recently, HP-GAN (Barsoum, Kender, and Liu 2017)
proposed a similar approach by utilizing advances in gen-
erative adversarial network (GAN) to model human motion
prediction as a generative modeling task. But the authors
have not evaluated its performance against the available de-
terministic state-of-the-art methods. The focus should be on
the performance metric of long-term prediction to rule-out
the phenomenon of convergence to mean pose sequence,
which is evident in deterministic motion prediction meth-
ods (Li et al. 2018). However, the generative setup incorpo-
rated by HP-GAN does not have the flexibility for quality
assessment of the generated motion. The challenge is to in-
corporate modifications in the probabilistic motion predic-
tion model, which can offer a new direction to evaluate ex-
pressiveness of such frameworks for long-term prediction.

It has been shown that, the quality of predictions by a
pure encoder-decoder setup is much better than a varia-
tional counterpart, mostly because of the complex objective
- to generate novel samples (or to learn a continuous latent
space) - of the latter. Hence, there has been an increasing
interest to incorporate a direct content loss (mean squared
loss) on the available training samples even for generative
modeling, as it ensures superior prediction quality along-
side avoiding mode-collapse. Works like (Chen et al. 2016;
Makhzani et al. 2015) incorporated autoencoder setup with
generative adversarial objective to improve quality of gener-
ation with stabilized training regime. Motivated by this line
of thought, unlike HP-GAN, the goal is to integrate direct
content loss on the available full motion sequence (com-
bined past and future frames) in the proposed conditional
sequence generative framework. For each available full se-
quence, the proposed model should be able to predict the ex-
act future sequence conditioned on the encoded past dynam-
ics and some extrinsic latent representation. Moreover, as a
given test sequence includes one of the plausible pose fore-
cast dynamics, the latent random vector, along with mod-
eling uncertainty in future prediction, must also be able to
represent the exact pose forecast dynamics with utmost effi-

ciency.
Unlike HP-GAN, the proposed generative framework in-

corporates a novel conditional discriminator architecture.
Here the discriminator not only acts like a critic, discriminat-
ing actual pose dynamics from the predicted ones; but also
regresses the randomly sampled extrinsic vector, which was
used for the prediction of the corresponding future dynam-
ics. Design of such discriminator has two prominent traits.
Firstly, it avoids the inherent problem of mode-collapse as
it attempts to learn a one-to-one invertible mapping be-
tween the extrinsic latent vector and the corresponding mo-
tion prediction. Secondly, it offers a new way to enforce di-
rect content loss (similar to deterministic encoder-decoder
framework) on the prediction of probabilistic decoder output
(more details in Approach Section). Thus, by integrating this
novel modification to the discriminator architecture with an
efficient learning algorithm (See Algorithm 1), we are able
to achieve superior motion prediction results as compared
to previous methods. Such setup also provides a flexibility
to compare quality of long-term prediction against previous
deterministic state-of-the-art approaches.

Related Works
Data-driven human motion prediction models have been
explored by researchers for quite a along time in both
computer animation and machine learning community. Be-
fore the deep-era various probabilistic graphical models
have been tried to efficiently model human motion dynam-
ics. Researchers have used time-series learning methods
like Hidden Markov Model (Arikan, Forsyth, and O’Brien
2003), restricted Boltzmann machines (Taylor, Hinton, and
Roweis 2007), Gaussian process (Wang, Fleet, and Hertz-
mann 2008), switching linear dynamical system (Pavlovic,
Rehg, and MacCormick 2001) to model human pose se-
quence data. However these methods fail to model the high-
dimensional complex human pose sequence information ef-
fectively. Because of the highly nonlinear dependencies
arose by the uncertainty in human movement, individually
modeling various different factors affecting motion predic-
tion does not scale well. These methods also suffer from
complex training regime (Taylor, Hinton, and Roweis 2007)
with complicated inference pipeline as a result of the ac-
quired sampling technique.

On the other hand, success of recurrent neural network
(RNN) for modeling time-series data motivated researchers
to effectively apply such architectures on human motion pre-
diction task. Multitude of recent works (Fragkiadaki et al.
2015; Martinez, Black, and Romero 2017) successfully used
variants of recurrent sequence-to-sequence architecture to
model complex human skeleton dynamics. Such methods
consider a seed motion sequence of certain time-step to con-
dition prediction of future pose dynamics by employing an
encoder-decoder recurrent pipeline. Ghosh et al. (Ghosh et
al. 2017) employ an additional non-recurrent encoder and
decoder to explicitly leverage spatial structure and depen-
dencies between joint locations to improve prediction qual-
ity of human pose sequence. Jain et al. (Jain et al. 2016)
proposed Structural-RNN to exploit the underlying spatio-
temporal graph for modeling human skeleton dynamics.



However all these methods do not consider the stochastic-
ity in future pose dynamics by modeling it as a determinis-
tic prediction problem. Hence, expressiveness of these ap-
proaches in modeling long-term motion sequence deterio-
rates as a result of convergence to a mean pose sequence.

HP-GAN (Barsoum, Kender, and Liu 2017) first at-
tempted to model human motion prediction as a probabilis-
tic generative approach. They leverage recent advances in
generative adversarial network (GAN) (Goodfellow et al.
2014) to adversarially train a recurrent motion prediction
framework. However, they fail to assess expressiveness of
such generative approach against deterministic counterparts.
In contrast, the proposed BiHMP-GAN incorporates novel
modifications in architecture and training regime to improve
expressiveness of the probabilistic method against available
deterministic approaches.

Approach
We here describe the details of the proposed probabilis-
tic human motion prediction framework. The sequence pre-
diction model takes a stream of input pose frames, which
is considered as past motion conditioning. Let X1:T =
[x1, x2, ...xT ] be the sequence of input 3D pose representa-
tions for time-step t = 1 to T . Here, a single pose frame
is represented by a set of joint angle parameters in the
kinematic representation form. Similarly, the output motion
sequence is represented by XT+1:T ′ , where (T ′ − T ) is
the length of predicted sequence. The objective is to learn
P (XT+1:T ′ |X1:T ), i.e. the model should predict future pose
dynamics conditioned on a given past motion sequence.

The prime complexity in the generation of human mo-
tion sequence can be analyzed in two folds. Firstly, the gen-
erative model should predict plausible human pose repre-
sentation at each time-step. Understanding the joint angle
limits while generating a 3D human pose can be considered
as the most important trait to avoid prediction of implausi-
ble joint angles. Secondly, the sequence of pose dynamics
should be coherent to resemble like a real human motion
dynamics. Previous methods do not address this complexi-
ties in human-motion modeling individually. A single recur-
rent network is employed for human motion prediction, as a
black-box, to handle both the above complexities in the out-
put motion prediction. Diverted from this general trend, we
plan to first learn a continuous pose embedding space inde-
pendent of the motion dynamics to avoid prediction of un-
likely or improbable skeleton joint parameters. This is cru-
cial, especially for models targeting long-term motion pre-
diction, as short-term motion for less than 200ms constitutes
minimal diversity in the forecasted pose with respect to the
immediate past frames.

Learning of Pose Embedding Representation
The objective is to learn a pose embedding space, zpose
so that P (zpose) models the distribution of only plausible
joint angle arrangements. The first choice is to use a gen-
erative adversarial network to model the same, which will
include a pose generator (or decoder), DEpose as a transfor-
mation from zpose ∼ P (zpose) to the actual skeletal pose,

xpose ∼ P (xpose). We emphasize learning of a generative
model instead of a simple auto-encoder as the objective is to
learn a continuous pose embedding space, which can allow
effective interpolation of pose sequence between two plausi-
ble pose frames (Radford, Metz, and Chintala 2015). A sim-
ple autoencoder without explicit enforcement of being gen-
erative leads to learning of a discrete pose embedding space
modeling only the available training samples, and hence de-
livers sub-optimal interpolation results. The core idea is to
interpret pose sequence in later stage of the motion predic-
tion framework, as a trajectory in the pose embedding space.
Such setting not only enforces prediction of plausible pose
frames, but also reduces burden on the subsequent sequence
learning framework by segregating the complex task of effi-
cient pose sequence prediction.

Following the idea of modeling human motion as a tra-
jectory in the pose embedding space, the pose sequence de-
coder network must output zpose sequence instead of xpose
sequence directly, as attempted by previous approaches (Li
et al. 2018). Similarly, the pose sequence encoder architec-
ture would also take zpose sequence as input representation.
This asks for an inference function to transform xpose to the
corresponding zpose, which is realized by introducing a pose
encoder, ENpose. Motivated from adversarial auto-encoder
framework (Makhzani et al. 2015), we train the full adver-
sarial pose autoencoder by employing a pose discriminator,
which can distinguish between predicted and actual skeletal
joint angle patterns. Cyclic reconstruction loss is added on
both xpose and zpose to enforce learning of an one-to-one
mapping in a generative adversarial setup.

Lcyc = |xpose − x̂pose|+ |zpose − ẑpose|
Where, x̂pose = DEpose(ENpose(xpose))

and ẑpose = ENpose(DEpose(zpose))

Here, zpose is sampled from a predefined prior distribution
P (zpose). Note that, ENpose is trained using only Lcyc loss,
whereas DEpose is trained using Lcyc + λLadv .

Furthermore, effectiveness of the model is evaluated by
visualizing interpolation results between two randomly cho-
sen pose frames. A balance between the cyclic reconstruc-
tion loss, Lcyc and the adversarial discriminator loss, Ladv
is maintained by exploring an effective relative weighting
scheme. This is crucial, as more emphasize on cyclic recon-
struction loss may derail the the setup towards learning a
discrete embedding space with deteriorated generalization
on novel pose samples.

Probabilistic Motion Prediction Framework
After obtaining an effective pose descriptor from the learned
pose embedding space, we focus on modeling the temporal
aspect of pose dynamics. Different human motion categories
will form a certain type of trajectory in the learned pose em-
bedding manifold. Note that, the trajectory should consti-
tute smooth transitions of zpose as a result of the probabilis-
tic generative approach to train the embedding representa-
tion. The resultant transformation functions viz.ENpose and
DEpose with frozen learned parameters is utilized in later
stage to effectively model human motion as a trajectory in
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Figure 2: Illustration of the full BiHMP-GAN pipeline. Note that, RNNdec is modeled in a residual setup, where each cell t
predicts ∆ẑt which is added with ẑt−1 to obtain final prediction ẑt.

the learned pose embedding. This is realized by introduc-
ing a recurrent sequence encoder RNNenc and a decoder
RNNdec architecture as shown in Figure 2.
RNNenc takes a sequence of pose embeddings as in-

put, which can be represented as Z1:T = [z1, z2, ...zT ] =
[ENpose(x1), ENpose(x2), ...ENpose(xT )]. The final hid-
den sate representation at time T , i.e. hencT is considered as
an intrinsic factor required for the prediction of future pose
dynamics. To model the inherent stochasticity in the gener-
ation of future pose sequence, we introduce an extrinsic fac-
tor r. Here r is considered as a random vector drawn from
a probability distribution, P (r), which can be taken as ei-
ther Gaussian or Uniform prior distribution. To influence the
prediction of future pose sequence the decoder recurrent net-
work (RNNdec) takes a tuple of both extrinsic and intrinsic
factors, i.e. (hencT , r) as shown in Figure 2.

Previous approaches design the decoder as an autore-
gressive framework, which mostly considers short-term past
sequence to regress the next pose representation. An op-
timum setup would be the one, where the next frame is
directly influenced by both long-term and short-term past
representations. Here, the long-term information is related
to the global properties of the given past motion dynam-
ics. This includes motion category and other pose and en-
vironmental constraints. Whereas, short-term representa-
tion constitutes pose dynamics from the immediate past
pose enforcing smoothness in the predicted sequence. Mo-
tivated by this, we plan to feed a concatenated represen-
tation of hencT , r and the chained input from the pre-
dicted past pose, as input to the RNNdec at each time-
step. Let the predicted sequence output from RNNdec be,
ẐT+1:T ′ = [ẑT+1, ẑT+2, ...ẑT ′ ]. (Note that, here RNNdec
is modeled in a residual setup, where each cell t predicts
∆ẑt which is added with ẑt−1 to obtain final prediction
ẑt). Then, the input at tth time-step to RNNdec will be
a concatenated tuple of (hencT , r, ẑt−1) as shown in Figure
2. The initial hidden state for RNNdec is also a function
of both hencT and r. As the sequence decoder predicts the
embeddings of actual pose representation, the final human
pose prediction is obtained by utilizing the frozen DEpose
transformation. Therefore the final output, X̂T+1:T ′ =

[DEpose(ẑT+1), DEpose(ẑT+2), ...DEpose(ẑT ′)].

Discriminator Design Supporting Enforcement of Con-
tent Loss The sequence prediction framework is also de-
signed by taking motivations from generative adversarial
network. The objective is to enable modeling of variations
in prediction of future sequence conditioned on the given
past motion i.e. P (XT+1:T ′ |X1:T ). As described above,
RNNdec effectively takes two input representations, viz.
output of RNNenc and r. Following this, the discriminator
takes the predicted pose sequence along with the input con-
ditioned past frames as shown in Figure 2. Here, the discrim-
inator architecture has 2 output heads, viz, a)DISCWGAN

and b) DISCr. The discriminator not only outputs a single
neuron for the usual adversarial loss, but also predicts the
random r vector which is being used to generate the corre-
sponding predicted sequence.

Moreover, a separate critic network is introduced with
similar architecture with a single output-head named as
DISCcritic. A binary cross entropy loss is applied on the
output of DISCcritic after the final sigmoid nonlinearity
to learn a discriminative function to distinguish between
the predicted and actual pose sequence. The single neuron
output of DISCWGAN is used to enforce minimization of
Earth Mover Distance (EMD) as proposed by Arjovsky et
al. (Arjovsky, Chintala, and Bottou 2017). Note that adver-
sarial loss from only DISCWGAN is used to train the RNN
encoder-decoder parameters for learning stability; follow-
ing implementation tricks by Gulrajani et al. (Gulrajani et
al. 2017). The additional output-head DISCr attached to
the discriminator, is a novel approach to regress the r vec-
tor, which can generate the input future sequence given the
past motion dynamics. The prime motivation behind incor-
poration of DISCr can be of two folds. First, being able
to regress r while training the encoder-decoder parameters
enforces learning of an one-to-one mapping avoiding mode-
collapse. Secondly, it offers a new direction to enforce con-
tent information directly on the predicted motion sequence.
Consider, there exists a particular r which can generate the
future frames exactly as it is given in a chosen training sam-
ple of length T ′. Now to be able to enforce a content loss
directly on the predicted sequence of RNNdec, we first per-
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form an inference of the full sequence (of length T ′) through
the trained discriminator to obtain a specific r′ vector from
the output head DISCr. This r′ is later utilized in the next
iteration to enforce a direct content loss between predicted
final pose sequence, X̂T+1:T ′ and the ground-truth,XT+1:T ′

as described in Figure 3.

/*Initialization of parameters */
ΘENC : Parameters of RNNenc
ΘDEC : Parameters of RNNdec
ΘDISC : Parameters of RNNdisc
for k iterations do

for m steps do
X1:T+αT ′ : minibatch training motion sequence
r: random minibatch sampled from prior p(r)

X̂r
T+1:T ′ = RNNdec( RNNenc(X1:T )‖r )

Ldiscadv = DISCWGAN ( X1:T ‖X̂r
T+1:T ′ )−

DISCWGAN ( X1:T ‖XT+1:T ′ )

Lrrec = |r −DISCr( X1:T ‖X̂r
T+1:T ′ )|

/* Update parameters for DISC network*/
ΘDISC := argmin

ΘDISC

(Ldiscadv + λrLrrec)

end
r′ = DISCr( X1:T ‖XT+1:T ′ )

X̂r′

T+1:T ′ = RNNdec( RNNenc(X1:T )‖r′ )

LXcontent = |XT+1:T ′ − X̂r′

T+1:T ′ |
Lgenadv = −DISCWGAN ( X1:T ‖X̂r

T+1:T ′ )

/* Update parameters of RNNenc and RNNdec */
ΘDEC := argmin

ΘDEC

(Lgenadv + λrLrrec + λcLXcontent)

ΘENC := argmin
ΘENC

(Lgenadv + λcLXcontent)

end
Algorithm 1: Training algorithm for BiHMP-GAN, with
explicit enforcement of direct content loss.

Regularization by Recursive Prediction To further reg-
ularize the training procedure, we incorporate recursive pre-
diction of motion sequence. Consider an input motion se-
quence, X1:αT ′ of length αT ′, where α is some integer
value depending on the available sequence length of a train-
ing sample. First, the prediction framework is used to ob-
tain X̂T+1:T ′ by considering X1:T as past motion sequence.
Following this, X̂T ′+1:2T ′ is obtained for α = 2 by con-
ditioning on the predicted past sequence, i.e. X̂T ′−T+1:T ′

as input dynamics. In general for a particular α value,
X̂(α−1)T ′+1:αT ′ is obtained by considering the intrinsic in-
put factor as a function of X̂(α−1)T ′−T+1:(α−1)T ′ . But as
discussed above, specific intrinsic factor rα is required for
each α value to be able to enforce a direct content loss in the
probabilistic framework. rα is obtained from the discrim-
inator head, DISCr for the following concatenated input
sequence: [X(α−1)T ′−T :(α−1)T ′ , X(α−1)T ′+1:αT ′ ] for each
recursive α step. This regularization not only improves our
long-term prediction results, but also acts like an effective
solution to avoid convergence to mean pose unlike previous
state-of-the-arts.

Discriminator architecture HP-GAN proposes to utilize
the full motion length X1:T ‖XT+1:T ′ as input to the recur-
rent pose discriminator architecture (‖ represents concate-
nation operation). The goal is to match P (XT+1:T ′ |X1:T )

distribution with P (X̂r
T+1:T ′ |X1:T ) for some r ∼ p(r) by

following the generative adversarial learning technique. Un-
like HP-GAN, to effectively capture P (X̂r

T+1:T ′ |X1:T ) we
propose certain intuitive modifications to the discrimina-
tor architecture. The qualitative results of HP-GAN (Bar-
soum, Kender, and Liu 2017) clearly highlights the catas-
trophic drift in the initial pose predictions as compared
to the immediate past. In general, by effectively modeling
P (XT+τ |X1:T ) for a very small τ (i.e. less than 50ms) such
spurious drifts can be avoided in the predicted motion se-
quence. This way, we enforce the model to learn less diver-
sity in the prediction of initial τ frames for any r ∼ p(r),
extrinsic factor, hence avoiding the catastrophic drift in the
generations. Following this we model both P (XT+τ |X1:T )
and P (XT−1−τ |XT+1:T ′) by employing a bidirectional re-
current neural network as shown in Figure 2. We utilize the
idea of plausible trajectory in the learned pose embedding,
by feeding the sequence of pose embedding representations
(i.e. the output of ENpose) to the bidirectional recurrent
architecture. Final output of the discriminator is extracted
from 4 different hidden representations i.e. final hidden state
of both forward and backwards recurrent RNN along with
hforwrd(T + τ) and hbackward(T − 1− τ) as shown in Fig-
ure 2.

Experiments
In this section we describe experimental details of BiHMP-
GAN along with analysis of both qualitative and quantita-
tive results on two publicly available datasets; viz. a) Human
3.6M (Ionescu et al. 2014) and CMU MOCAP.

The full pipeline of BiHMP-GAN is implemented in ten-
sorflow with ADAM optimizer. We use a batch size of 32



Table 1: Comparison of motion prediction error on Human 3.6M dataset for short-term (80ms, 160ms, 320ms, 400ms) and long-
term(1000ms) prediction.BiHMP-GAN clearly outperforms others in long-term prediction.

Walking Eating Smoking Discussion
ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

RRNN 0.33 0.56 0.78 0.85 1.14 0.26 0.43 0.66 0.81 1.34 0.35 0.64 1.03 1.15 1.83 0.37 0.77 1.06 1.10 1.79
Conv-Motion 0.33 0.54 0.68 0.73 0.92 0.22 0.36 0.58 0.71 1.24 0.26 0.49 0.96 0.92 1.62 0.32 0.67 0.94 1.01 1.86

HP-GAN(minerr) 0.95 1.17 1.69 1.79 2.47 1.28 1.47 1.70 1.82 2.51 1.71 1.89 2.33 2.42 3.2 2.29 2.61 2.79 2.88 3.67
Ours(minerr) 0.33 0.52 0.64 0.69 0.88 0.21 0.33 0.55 0.71 1.20 0.26 0.49 0.91 0.88 1.12 0.32 0.65 0.92 9.98 1.78
Ours(r′) 0.33 0.52 0.63 0.67 0.85 0.20 0.33 0.54 0.70 1.20 0.26 0.50 0.91 0.86 1.11 0.33 0.65 0.91 9.95 1.77

Table 2: Ablation analysis on Human 3.6M, reporting mean aver-
age error (across 15 categories) at 1000ms

Metrics r′ = DISCr r′ = argminerr
Without pose embedding 1.76 1.76

Without encoder state in chaining 1.71 1.72
Without recursive prediction 1.69 1.69

BiHMP-GAN 1.67 1.68

Table 3: Quantitative comparison with HP-GAN (classifier accu-
racy on real test samples of Human 3.6M: 55.4%). We use the pro-
posed discriminator architecture to design critic network for HP-
GAN, which can easily detect the catastrophic drift in the initial
predicted sequence

Accuracy Motion Classifier Critic
HP-GAN 9.8 18.5

BiHMP-GAN 41.2 74.6

with learning rate set at 0.00005. Single layer LSTM (Chung
et al. 2014) with 512 hidden units is incorporated as a
recurrent architecture for both sequence encoder, decoder
and bidirectional discriminator network. Following previous
motion prediction works (Li et al. 2018; Martinez, Black,
and Romero 2017) the length of intrinsic past pose sequence
is set to 50, i.e. 2 seconds of skeleton motion at 25 fps set-
ting. Considering fair evaluation on long-term prediction,
the length of predicted motion sequence is set to 25. We
choose τ=1 for the modified discriminator architecture. The
value of α for the recursive prediction regularization is set to
2. Instead of training the recurrent encoder-decoder param-
eters with addition of all the loss functions described above,
we sequentially iterate over LXcontent and the recursive con-
tent regularization loss separately from the adversarial loss,
Ldiscadv + λrLrrec by defining different ADAM optimizers for
each of them. We choose N (0, 1) prior distribution for both
zpose and r with 32 and 8 dimensions respectively. To ensure
fair comparison, we trained HP-GAN (Barsoum, Kender,
and Liu 2017) on Human 3.6M dataset with the same set-
ting of sequence lengths and input representations using the
publicly available implementation.

Datasets
Human 3.6M is a widely accepted dataset for benchmark-
ing human motion prediction works as it constitutes highly
diverse action categories with actions performed by mul-
tiple subjects. Preprocessing and data selection criteria is
directly followed from the recent work of Li et al. (Li et
al. 2018). We finally use a 54 dimensional input represen-

tation as xpose eliminating global orientation and transla-
tion parameters. Euclidean error on the predicted Euler an-
gles is considered as an evaluation metric for comparison of
BiHMP-GAN against previous state-of-the-art motion pre-
diction methods.

We also report performance of BiHMP-GAN on CMU
motion capture dataset to demonstrate generalization of the
proposed probabilistic prediction method. We follow the
preprocessing and data selection criteria from Li et al. (Li
et al. 2018), which finally selects eight action categories af-
ter pruning interaction based and other repeated action cate-
gories.

Comparison with other generative approaches
We first compare our prediction performance against the
available generative model HP-GAN (Barsoum, Kender, and
Liu 2017). After training HP-GAN on the same settings for
Human 3.6M dataset, efficacy of the predicted motion is
evaluated by quantifying discriminability of a critic network
to classify between the generated and real motion dynam-
ics. Note that, we have employed the proposed modified dis-
criminator architecture for the critic network to specifically
consider the initial drift in predicted motion (see Table 3).
We also report performance of the generated motion by feed-
ing the concatenated seed sequence and the generated mo-
tion to an action classifier trained only on real human motion
dynamics(see Table 3). Both qualitative (see Figure 4) and
quantitative (see Table 3) results clearly demonstrate supe-
riority of BiHMP-GAN. As a generative model, unlike HP-
GAN, BiHMP-GAN is able to predict diverse prediction se-
quences without loosing the coherence with immediate past
conditioning.

Comparison with other deterministic approaches
For each test sample X1:T ′ of length T ′, there exist a
particular r′ which can model the exact predicted motion
as X̂r′

T+1:T ′ = RNNdec(RNNenc(X1:T )‖r′). Therefore,
modeling expressibility of a generative method can be eval-
uated by obtaining the best possible value of r′ which can
express a given test sample. Motivated by this, we define
two different metrics to quantitatively assess the quality of
non-deterministic predictions.

Firstly, considering r′ = DISCr(X1:T ‖XT+1:T ′), we
report the prediction error of X̂r′

T+1:T ′ against the cor-
responding ground-truth XT+1:T ′ , which is denoted as
Ours(r′) in Table 1 and 4. The metrics clearly demonstrate
quality of the generated motion for both short-term (80 ms,
160 ms, 320 ms and 400 ms) and long-term prediction (1000



Table 4: Comparison of motion prediction error on CMU MOCAP dataset for short-term (80ms, 160ms, 320ms, 400ms) and long-
term(1000ms) prediction. BiHMP-GAN clearly outperforms others in long-term prediction.

Basketball Basketball Signal Directing Traffic Jumping
ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

RRNN 0.50 0.80 1.27 1.45 1.78 0.41 0.76 1.32 1.54 2.15 0.33 0.59 0.93 1.10 2.05 0.56 0.88 1.77 2.02 2.40
Conv-Motion 0.37 0.62 1.07 1.18 1.95 0.32 0.59 1.04 1.24 1.96 0.25 0.56 0.89 1.00 2.04 0.39 0.60 1.36 1.56 2.01

Ours(minerr) 0.36 0.60 1.02 1.12 1.84 0.33 0.56 1.00 1.19 1.89 0.25 0.52 0.84 0.96 1.97 0.38 0.57 1.32 1.51 1.94
Ours(r′) 0.37 0.62 1.01 1.11 1.83 0.32 0.56 1.01 1.18 1.88 0.25 0.51 0.85 0.96 1.95 0.39 0.57 1.31 1.50 1.93

Running Soccer Walking Washwindow
ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

RRNN 0.33 0.50 0.66 0.75 1.00 0.29 0.51 0.88 0.99 1.72 0.35 0.47 0.60 0.65 0.88 0.30 0.46 0.72 0.91 1.36
Conv-Motion 0.28 0.41 0.52 0.57 0.67 0.26 0.44 0.75 0.87 1.56 0.35 0.44 0.45 0.50 0.78 0.30 0.47 0.80 1.01 1.39

Ours(minerr) 0.27 0.40 0.49 0.54 0.65 0.26 0.43 0.71 0.84 1.52 0.34 0.44 0.43 0.47 0.71 0.30 0.48 0.76 0.98 1.32
Ours(r′) 0.28 0.40 0.50 0.53 0.62 0.26 0.44 0.72 0.82 1.51 0.35 0.45 0.44 0.46 0.72 0.31 0.46 0.77 0.92 1.31

(time in ms)   40  120        200         280         360         440        520         600            1840     1920        2000   40  120        200         280         360         440         520          600            1840     1920        2000

HP-GAN BiHMP-GAN

Figure 4: Qualitative results on Human 3.6M dataset on eating category. It illustrates variations in forcasted motion (green-
purple) for a given seed sequence (red-blue) as modeled by HP-GAN and BiHMP-GAN. The last row shows the motion sequence
generated via minerr strategy. We highlight the catastrophic drift in the predicted motion of HP-GAN by dotted red box. We
observe generation of unrealistic pose for long-term predictions by HP-GAN (highlighted in pink box), as it does not enforce
generation of plausible pose frame. Also, generations of HP-GAN for a given seed sequence, lack variation for different latent
vector r, as opposed to BiHMP-GAN.

ms). Improved results on long-term prediction performance
shows effectiveness BiHMP-GAN in overcoming the phe-
nomenon of convergence to mean pose, which is quite evi-
dent in deterministic approaches; RRNN (Martinez, Black,
and Romero 2017) and Conv-Motion (Li et al. 2018).

However, in the previous metric comparison, we have
to use the ground-truth prediction XT+1:T ′ as an input to
the discriminator to obtain a particular vector r′. Hence,
we also propose another metric, to assess expressibility
of the probabilistic motion prediction model as follows.
We first save a batch of 1000 vectors ri randomly sam-
pled from the prior distribution P (r). Then, for each test
sample X1:T ′ we report the minimum Euclidean error as,
minError(X̂ri

T+1:T ′ , XT+1:T ′) for i=1,2,...1000. Table 1
and 4 holds comparison of this metric under the row heading
Ours(minerr) and HP-GAN(minerr). It clearly highlights
expressiveness of BiHMP-GAN against HP-GAN and other
the deterministic approaches.

Ablation study
Here, we quantitatively analyze effectiveness of various de-
sign and learning schemes proposed for BiHMP-GAN. To
demonstrate the advantage of learning pose embedding rep-
resentation, we compare BiHMP-GAN against a baseline

without the pose embedding transformations (see Table 2).
For the decoder setup, the effect of feeding concatenated
previous pose feature along with the intrinsic encoder hid-
den state is evaluated against a baseline; with input sequence
of only chained previous pose feature (See Table 2). Finally,
the effect of incorporating recursive prediction regulariza-
tion in the training of BiHMP-GAN is demonstrated against
a baseline designed without any such regularization.

Conclusion

In this work, we proposed a novel probabilistic generative
model for prediction of uncertain future motion dynamics.
Being generative we have carefully designed the framework
to model the available training sequences with a direct con-
tent loss. Modeling human motion as a trajectory in pose
embedding makes BiHMP-GAN devoid of generating un-
realistic pose frames as compared to other approaches. We
demonstrate improved expressibility of BiHMP-GAN spe-
cially for long-term motion prediction against other deter-
ministic motion prediction works. In future, we plan to ex-
tend similar training framework for complex motion se-
quences like, dance, martial arts etc. by aiming towards
achieving a general motion embedding.
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