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Abstract

We present an unsupervised learning method for dense crowd
count estimation. Marred by large variability in appearance
of people and extreme overlap in crowds, enumerating peo-
ple proves to be a difficult task even for humans. This im-
plies creating large-scale annotated crowd data is expensive
and directly takes a toll on the performance of existing CNN
based counting models on account of small datasets. Moti-
vated by these challenges, we develop Grid Winner-Take-All
(GWTA) autoencoder to learn several layers of useful filters
from unlabeled crowd images. Our GWTA approach divides
a convolution layer spatially into a grid of cells. Within each
cell, only the maximally activated neuron is allowed to up-
date the filter. Almost 99.9% of the parameters of the pro-
posed model are trained without any labeled data while the
rest 0.1% are tuned with supervision. The model achieves su-
perior results compared to other unsupervised methods and
stays reasonably close to the accuracy of supervised baseline.
Furthermore, we present comparisons and analyses regarding
the quality of learned features across various models.

Introduction
Counting people in crowds, though a necessity in many prac-
tical scenarios, is very challenging. Typical dense crowds
with thousands of people lend any naive person detector
fruitless. This is because of the absence of consistent ob-
servable features like face, body parts etc. owing to extreme
occlusion, pose variations and background clutter. In acute
crowding, detecting people appearing as just blobs is labori-
ous and difficult even for humans (see Figure 1). The visual
patterns that need to be learned for detecting people, vary
drastically from sparse to extreme dense crowds. As a re-
sult, any crowd counting system has to model such a huge
diversity of appearance of people, requiring large annotated
datasets for training. The performance of models based on
Convolutional Neural Networks (CNN), in general, is di-
rectly related to the availability of large datasets encompass-
ing the entire diversity. However, due to annotation diffi-
culty, the datasets available for dense crowd counting are
small, with the current largest one having only 482 images
with 0.2 million person annotations. This seriously limits the
advances in annotation intensive problems like dense crowd
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Figure 1: Typical dense crowd images with human anno-
tations (from Part A of Shanghaitech dataset (Zhang et al.
2016)). Sheer density of the crowd compounded with severe
occlusions render crowd annotation challenging.

counting. Hence we formulate the objective of this work as
to train crowd counting models to the maximum extent with
unlabeled data. To the best of our knowledge, there are no
other works in this direction for dense crowd counting and
is expected to fuel more research in the area.

Existing unsupervised methodologies are mostly based on
autoencoders. They learn features by training to predict its
own input (Hinton and Salakhutdinov 2006; Vincent et al.
2008) or some function of the input (Larsson, Maire, and
Shakhnarovich 2017; Agrawal, Carreira, and Malik 2015;
Wang and Gupta 2015; Pathak et al. 2016; Doersch, Gupta,
and Efros 2015; Noroozi and Favaro 2016). It has been
shown that many autoencoder based approaches fail to learn
useful features (Makhzani and Frey 2015). When applied
on highly diverse dense crowd images, we show that cur-
rent unsupervised methods do not learn enough useful fea-
tures for density regression as evidenced from their perfor-
mance scores. In order to improve feature learning from un-
labeled crowd images, we consider winner-take-all (WTA)
regularization for autoencoders. WTA autoencoder proposed
by (Makhzani and Frey 2015), is inspired from the behavior
of actual neuron adaptation in human brain. The basic idea
of WTA approach is to selectively perform learning for neu-
rons in the autoencoder. This means not all neurons are al-
lowed to update their weights at a particular iteration, creat-
ing a race among neurons to learn a feature and get special-
ized. The “winner” neuron is the one which has the high-
est activation value. This loosely tries to model the inhibi-
tion mechanism seen in brain neurons. It has been shown



that WTA auto-encoders acquire better features than nor-
mal autoencoders (Makhzani and Frey 2015). Till now WTA
models have only been evaluated on datasets like MNIST,
CIFAR etc. and are not scalable to highly diverse scenar-
ios like dense crowds. Hence we significantly modify the
WTA training methodology and develop Grid Winner-Take-
All (GWTA) convolutional autoencoders to handle huge di-
versity in crowd scenes.

In a nutshell, GWTA spatially divides each convolutional
feature map into a grid of cells, where WTA is applied in
each cell. This allows local winners in a fixed neighbor-
hood rather than global ones as in WTA autoencoder. Hence,
GWTA autoencoder is able to leverage diversity of features
across space, allowing scalable and efficient training with di-
verse crowd data. Our crowd counting system is composed
of a CNN regressor, for which we train several layers in an
unsupervised manner, i.e. using only crowd images and no
annotation. Each layer of the model is trained separately as
an GWTA autoencoder to reconstruct its own input. This
stacked autoencoder training progressively learns a hierar-
chy of discriminative features frequently appearing in crowd
images. Majority of the parameters of the network, almost
99.9%, are trained in this manner without any labeled su-
pervision. This is followed by supervised training of the re-
maining parameters to get the final crowd density regressor.
But note that the layers trained in unsupervised manner are
frozen and only the last two layers which take unsupervised
representations as input are tuned with labeled data. This
way our model leverages unlabeled data for training major-
ity of its parameters and only require labeled examples to
adjust very few parameters (less than 0.1%).

As a summary, this work contributes the following:

• A stacked convolutional autoencoder model based on grid
winner-take-all (GWTA) paradigm for large-scale unsu-
pervised feature learning.

• The first crowd counting system that can train almost
99.9% of its parameters without any annotated data.

Previous Work
All learning based previous works in dense crowd count-
ing require labeled data. The dominant methodology in the
field is to learn a regressor to estimate crowd density map
rather than predicting the crowd count directly. Some early
works like (Wang et al. 2015) attempt to regress the count
directly, but only to be outperformed by density regression
based models as they can acquire better features. Zhang et
al. (2015) optimize their counting CNN by back-propagating
both crowd density loss as well as crowd count loss in an al-
ternate fashion. In order to tackle large scale variations in
crowd scenes, multi-scale models are introduced. Onoro et
al. (2016) have a set of CNNs, each specific to one par-
ticular scale with their outputs fused at the end through
learnable layers. Similar approach is employed with multi-
column network by (Boominathan, Kruthiventi, and Babu
2016), where they use a combination of shallow and deep
CNN. Zhang et al. (2016) fuse output from three CNN
columns with different receptive fields to capture crowds
at multiple scales. Further improvement on multi-column

models is achieved by (Babu Sam, Surya, and Babu 2017;
Babu Sam et al. 2018), where the CNN columns are forced
to get specialized aggressively through a differential train-
ing procedure. Adding auxiliary information, low-level or
scene-level, in the form of confidences over crowd density
types to the regressor network is shown to improve perfor-
mance (Sindagi and Patel 2017a; 2017b). In this case, sep-
arate networks need to be trained to classify crowd scenes
based on predefined density classes (sparse, dense etc.). Dif-
ferent from these approaches, the top-down feedback mech-
anism of (Babu Sam and Babu 2018) iteratively improves
initial density prediction of a CNN regressor. Recent work
of Liu et al. (2018) leverage unlabeled data for training
in a multitask framework. This method is fully supervised
with an additional task of count ranking on unlabeled im-
ages. However, a similar VGG based model utilized by (Li,
Zhang, and Chen 2018) achieves better performance without
additional unlabeled data.

The importance of unsupervised learning has been re-
alized long back, resulting in numerous works. While the
traditional clustering based methods try to infer groups in
the data, modern approaches effort to learn good features
by training with reconstruction objective. An autoencoder
(Hinton and Salakhutdinov 2006) consists of an encoder
and a decoder. The encoder generates a latent representa-
tion for the input, which is constrained by the decoder to
have enough information to reconstruct the input back. In
order to avoid overfitting, several variations are proposed.
Vincent et al. (2008) employ denoising autoencoders that
force the network to learn random noise removal. Variational
autoencoders by (Kingma and Welling 2013) model input
distribution in a variational Bayesian approach. Restricted
Boltzmann machines (RBMs) (Smolensky 1986) and deep
Boltzmann machines (DBMs) (Salakhutdinov and Hinton
2009) are other generative models for the same. Convo-
lutional neural network based approaches like Pixel-RNN
(Oord, Kalchbrenner, and Kavukcuoglu 2016) and Pixel-
CNN (Oord et al. 2016) learn image density models and
can generate diverse scenes. Furthermore, generative adver-
sarial training techniques are used for density modeling in
(Donahue, Krähenbühl, and Darrell 2017) and (Dumoulin et
al. 2017). More recent paradigm is that of self-supervision,
where instead of reconstructing the input image, some label
that can be computed from the input is used for supervision.
In colorization works like (Zhang, Isola, and Efros 2016;
Larsson, Maire, and Shakhnarovich 2016; 2017), the net-
work is trained to output colored image from its gray-
scale version, thereby hopefully learning representations
useful for other tasks. Self-supervisory labels are computed
from motion cues in (Agrawal, Carreira, and Malik 2015;
Jayaraman and Grauman 2015; Pathak et al. 2017). Other
works obtain self-supervision labels from videos (Wang and
Gupta 2015; Misra, Zitnick, and Hebert 2016), inpainting
(Pathak et al. 2016), co-occurrence (Isola et al. 2016), con-
text (Noroozi and Favaro 2016; Doersch, Gupta, and Efros
2015), etc. Zhang et al. (2017) argue that cross-channel pre-
diction of raw data itself outperforms other task based self-
supervision. Recent work of (Jenni and Favaro 2018) for-
mulate the task of spotting artifacts in images for learning
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Figure 2: Grid Winner-Take-All architecture proposed in
this work. Only the maximally activated neuron in a cell is
allowed to pass its activation, creating sparse updates during
backpropagation.

useful features. One limitation of these self-supervised ap-
proaches is the need for defining certain pseudo label ob-
jectives compatible with the end task. If the objectives does
not align, the final performance might suffer as we find
in the case of density estimation. Hence in this work we
prefer an unsupervised method for crowd counting. Espe-
cially, we leverage on winner-take-all (Makhzani and Frey
2015) paradigm, which we develop further to suite large-
scale training with diverse crowd scenes.

Our Approach
Grid Winner-Take-All Autoencoders for
Unsupervised Learning
Most of the unsupervised learning models are based on a
reconstruction loss. Any normal autoencoder (Hinton and
Salakhutdinov 2006; Vincent et al. 2008) learns features
from unlabeled data in an attempt to reconstruct the input
through a representational bottleneck. However, the repre-
sentation acquired by the encoder is constrained to only have
enough information for the decoder to reconstruct the input.
This results in many cases, especially with convolutional
neural networks, the encoder to learn delta or identity filters.
These pass-through filters are degenerate and simply passes
the input as such without applying any significant transfor-
mation (Makhzani and Frey 2015). Though these near iden-
tity filters causes trivial reduction in reconstruction objec-
tive, they are almost useless for any other tasks. It is hence
apparent that normal reconstruction objective might not re-
sult in useful feature learning. One way to mitigate this ef-
fect is by increasing the task difficulty from input recon-
struction to predict pseudo labels that can be easily obtained
from the input (Larsson, Maire, and Shakhnarovich 2017;
Agrawal, Carreira, and Malik 2015; Wang and Gupta 2015;
Pathak et al. 2016; Doersch, Gupta, and Efros 2015; Noroozi
and Favaro 2016). Another possible way is to constrain the
encoder filters directly with some regularizers. In this pa-
per, we follow the approach pioneered by (Makhzani and
Frey 2015), where the encoder filters are constrained to fire
only at the maximally activated locations. We make follow-
ing crucial changes to WTA to create GWTA autoencoder:

• The WTA method is adapted for large scale training with
highly diverse data. Instead of applying WTA sparsity
over the entire spatial map, we apply only over fixed
neighborhood. This helps in more efficient training and

Input Image GWTA Output Reconstruction by GWTA
Autoencoder

Reconstruction by
Normal Autoencoder

Figure 3: GWTA output of Conv1 layer for a sample image.
Note that the reconstruction by GWTA autoencoder is very
sparse compared to normal autoencoder.

avoid extreme sparsity which is better for highly diverse
crowd data.

• More model constraining. While Makhzani et al. (2015)
use separate decoders with large filters, we show that for
our task of interest, a tied decoder gives improved results.
Figure 2 illustrates our proposed GWTA architecture.

GWTA is applied during the unsupervised training phase
on the activation maps of the convolutional encoder. GWTA
sparsity is applied independently over each channel. Any
given feature map is divided into a grid of rectangular cells
of pre-defined size h×w. During forward propagation of the
input, only the “winner” neuron in the h×w cell is allowed
to pass the activation. The “winner” neuron is the one having
the maximum value of activation in the cell and activations
of all other neurons in the h × w cell are set to zero. Now
the task of the decoder is to reconstruct the encoder input
from such a sparse activation map, which is extremely hard.
Hence, the encoder cannot simply learn near identity filters
and get minimum reconstruction cost, but are forced to ac-
quire useful features recurring frequently in the input data.
Figure 3 shows an exemplar GWTA output and correspond-
ing reconstruction. In GWTA, the weight update comes from
few “winner” neurons in the entire feature map rather than
receiving contribution from all the neurons in a normal au-
toencoder. This prevents filters from trying to reconstruct all
parts of the input equally as in a normal autoencoder, but
are forced to get specialized for certain patterns, resulting
in more useful feature learning. Note that GWTA sparsity is
applied only while training and is removed during testing.
Since features learned are mostly non-trivial and not near
identity, the encoder outputs carries significant abstractions.

The architecture for GWTA is motivated from unique
characteristics of highly diverse crowd images. There ex-
ists severe variation in appearance of people even within
a crowd image due to perspective changes, density gradi-
ents or occlusions. Hence the feature sets needed for faithful
crowd density estimation mostly rely on local crowd pat-
terns. Since GWTA is done in a grid fashion, we are al-
lowing local winners to update themselves and better learn
specific crowd patterns. Normal autoencoders or approaches
like (Makhzani and Frey 2015) do not explicitly take into
account this spatial locality, but learn features globally to re-
construct the entire input, which might not be very useful
for density regression. At present, we do not have any theo-
retical measure of feature usefulness for density estimation,
other than computing final regression performance.
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Figure 4: Architecture of GWTA based Crowd Counting CNN (GWTA-CCNN). Unsupervised training is done in stages, updat-
ing every layer by reconstructing its own input regularized by the GWTA sparsity. Last two layers are trained with supervision.

Architecture of GWTA Counting CNN
To demonstrate the merit of the proposed architecture, we
use a simple crowd counting CNN and train almost all pa-
rameters with unlabeled data followed by supervised train-
ing of the remaining parameters. We use a modified version
of the CNN regressor introduced by (Zhang et al. 2016).
The network consists of six convolutional layers with three
pooling layers in-between. The first four layers accounting
around 99.9% of the total parameters, are trained in an unsu-
pervised manner and are then frozen. The remaining layers
are trained with labeled data to regress crowd density map.

The unsupervised training is performed in stages, stacking
a hierarchy of GWTA autoencoders as elucidated in Figure
4. For the first stage, random patches of size 224 × 224 are
extracted from crowd images and are fed to the first GWTA
autoencoder. This autoencoder has the convolutional layer
Conv1 as enocoder followed by the GWTA regularizer layer.
The GWTA cell size is chosen to be 32 × 32 and is subse-
quently halved after every pooling layer so that grid dimen-
sions remain same across layers. The decoder DeConv1 is
a transposed convolution with its weight tied with that of
Conv1. Note that we do not have bias for the encoder and
decoder, which we find to be empirically better. The param-
eters of Conv1 are updated by backpropagating the l2 loss
between the input and the DeConv1 output. In general, if
F l
Xi

(x; Θ) denotes the output of layer l for input Xi and
F̃ l
Xi

(x; Θ) be the corresponding GWTA decoder reconstruc-
tion, then the loss function is given by,

Ll2(Θ) =
1

2N

N∑
i=1

‖F l−1
Xi

(x; Θ)− F̃ l
Xi

(x; Θ)‖22, (1)

where N is the number of training samples and Θ refers
the learnable parameters. Parameters Θ are obtained by op-
timizing Ll2 with stochastic gradient descent (SGD). The
reconstruction loss tries to maximize the similarity between

the reconstruction and the input, but is severely limited by
the GWTA sparsity. This prevents the filters being learned
from reaching near pass-through. The training is continued
till loss Ll2 on the validation set stops improving.

After the first stage encoder-decoder is trained, the Conv1
weights are frozen and the Conv1 output (without GWTA)
after pooling is fed to the next stage encoder. The Conv1 ac-
tivations are scaled for training stability to be in 0-1 range
by dividing by the maximum response in every feature map.
The maximum values are computed from the train set and
are fixed for subsequent stages of training as well as for test-
ing. Conv2 along with the corresponding deconvolution De-
Conv2 forms another GWTA autoencoder and is trained with
the objective to reconstruct Conv1 output. This stage-wise
training of GWTA autoencoders is continued till Conv4,
each one learning useful representation for the output of pre-
vious layer. In this way, 99.9% of the parameters are trained
without supervision and the feature representation of Conv4
is mapped to density map with supervision.

The supervised stage is required since the unsupervised
training can result in some features not so useful for the
end task of crowd counting. So, some level of supervision
is needed to select appropriate features for density map esti-
mation. There are many methods in the literature on how to
generate density maps from head annotation available with
the datasets. Most common method is to blur the head an-
notation with a Gaussian of fixed variance summing to one.
In this work, we use a sigma of 8.0 for generating ground
truth density maps. The supervised training is performed on
the last two layers with simple 3 × 3 filters accounting for
less than 0.1% of the total parameters (see Figure 4). These
layers are trained to regress the density map by backprop-
agating l2 loss between between the predicted and ground
truth map. Here the l2 loss function is defined as

LD
l2 (ΘS) =

1

2N

N∑
i=1

‖DXi
(x; ΘS)−DGT

Xi
(x)‖22, (2)
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Figure 5: Sample predictions given by GWTA-CCNN on images from Shanghaitech dataset. The predicted density maps closely
resemble that of the supervised CCNN model, emphasizing the ability of our unsupervised approach to learn useful features.

where DXi
(x; ΘS) stands for the output of the supervised

layers with parameters ΘS and DGT
Xi

(x) is corresponding
ground truth density map for the input image Xi. SGD is
continued till the validation accuracy plateaus or does not
improve. Note that none of the parameters in Conv1 to
Conv4 are updated in the supervised stage.

For a given test image, overlapping patches (10% overlap)
are obtained and evaluated on the trained model. The density
map predictions of the overlapping areas are averaged to ob-
tain the final density map. The crowd count is calculated by
summing the density map.

Experiments
Evaluation Scheme
We evaluate the model performance on standard crowd
counting datasets. Primarily two metrics are used by all su-
pervised works on crowd counting. Count estimation accu-
racy of the model is inferred from the Mean Absolute Error
or MAE metric. It is expressed as

MAE =
1

N

N∑
i=1

|CXi
− CGT

Xi
|, (3)

where the count predicted by the model for image Xi is CXi

while its actual count being CGT
Xi

. MAE is evaluated over
the test set with N images. Mean squared error or MSE is
the second metric for model comparison. MSE is defined as,

MSE =

√√√√ 1

N

N∑
i=1

(CXi − CGT
Xi

)2, (4)

a measure of variance of count estimation, indicating robust-
ness of prediction.

Shanghaitech dataset
The Shanghaitech dataset introduced by (Zhang et al. 2016)
is the largest crowd counting dataset. Part A set of the

dataset has 300 training images and 182 images for testing.
The images are collected from the Internet and the density
of the crowds ranges from 33 to 3139.

We compare performance of GWTA-CCNN with that
of other methods in Table 1. First important experiment
is the random baseline where the unsupervised layers are
not trained but randomly initialized. Subsequent supervised
training is done on the feature representation obtained from
this randomly initialized network. As expected, our GWTA
based network achieves significantly higher count accuracy
than the randomly initialized network. This suggests that
the unsupervised training has resulted in learning of features
useful for density estimation. Then we try end-to-end con-
volutional autoencoders (Hinton and Salakhutdinov 2006),
where the CCNN is trained to predict the input image. This
is followed by supervised training of last two layers to map
features learned by Conv4 (in Figure 2) to crowd density.
Denoising autoencoder (Vincent et al. 2008) is also evalu-
ated where the objective is to reconstruct clean image from
noisy input. Clearly, the proposed GWTA-CCNN achieves
better MAE and MSE than these end-to-end autoencoders.

Another important baseline is with fully supervised train-
ing of the CCNN. The network is same as that in Figure 4
(Conv1 to Conv6). Obviously, the MAE for fully supervised

Method MAE MSE
CCNN Supervised 124.6 186.9

CCNN Random 367.6 510.1
Autoencoder 162.1 233.3

Denoising Autoencoder 181.9 254.1
CCNN without WTA 193.0 280.9

GWTA-CCNN without tied decoder 195.6 277.0
GWTA-CCNN 154.7 229.4

Table 1: Performance of GWTA-CCNN on Part A of Shang-
haitech dataset.



Method MAE MSE
CCNN Supervised 367.2 551.3

CCNN Random 903.2 1166.2
Autoencoder 1272.8 1562.3

Denoising Autoencoder 1080.9 1391.1
CCNN without WTA 448.3 633.7

GWTA-CCNN without tied decoder 500.3 697.8
GWTA-CCNN 433.7 583.3

Table 2: Comparison of GWTA-CCNN with other methods
on UCF CC 50 dataset (Idrees et al. 2013). Our model deliv-
ers superior performance than other unsupervised methods.

CCNN is lower than that of GWTA training, but is reason-
ably close, the difference in MAE being just 30.1. Further,
we ablate our model by training without GWTA. The re-
sults evidence the significant improvement in performance
contributed by the GWTA regularizer. Similarly, GWTA au-
toencoder with an untied decoder having larger filters as in
(Makhzani and Frey 2015) performs worse, justifying our
design choice.

Figure 5 presents density maps regressed by GWTA-
CCNN and supervised network along with the correspond-
ing ground truths. It is interesting to note that the density
maps by GWTA-CCNN closely resemble the predictions by
the supervised model. This emphasizes the ability of our ap-
proach to learn better features for crowd density estimation.

UCF CC 50 dataset
UCF CC 50 dataset (Idrees et al. 2013) is one of the earliest
and the smallest dataset for dense crowd counting with just
50 images. The dataset still remains very challenging be-
cause of the small size and the extreme variability of crowd
density across the images. In fact, the crowd counts vary
from 94 to 4543 amongst image. Since there is no train-test
split made available, 5-fold cross-validation is adopted to
evaluate counting models on the dataset (Idrees et al. 2013).

Again we see similar trend on UCF CC 50 as with Shang-
haitech dataset. In Table 2, GWTA-CCNN has better ac-
curacy than other unsupervised baselines and is also close
to the supervised baseline. We see that the end-to-end au-
toencoder methods have completely failed to learn useful
feature for density regression. This may be possibly due to
less training data (just 40 images) available from the dataset.
But note that, despite having very less training images, our
GWTA based model has significantly better results.

Analysis and Ablations
Supervised Vs Unsupervised Features
It is important to compare features obtained through unsu-
pervised learning to that of its supervised counterpart. This
would give valuable insights on how GWTA model works as
well as help future researches to bridge the performance gap
between the two training paradigms. Figures 6 and 7 display
features maps from supervised CCNN model, autoencoder
with and without GWTA. Only some of the feature maps are

INPUT IMAGE CONV1 CONV2 CONV3 CONV4

FULLY
SUPERVISED

CCNN

GWTA-CCNN

CCNN 
WITHOUT 
GWTA

Figure 6: Qualitative comparison of features learned by
GWTA autoencoder with that of the fully supervised CCNN.
The images are sum maps of all the features in a layer.

Figure 7: Some of the individual feature maps of Conv1 for
GWTA and supervised CCNN.

shown due to space constraints, but the sum maps in Figure
6, which are sum of all the feature maps gives a general idea
about all the feature maps in a particular layer. It is clear
from Conv1 maps (Figure 7) that supervised and GWTA un-
supervised are close in terms of the features learned, subject
to different value ranges. Moreover, the sum maps of the
features are also close indicating that most of the filters are
similar as that of supervised. Note that the feature maps of
autoencoder without GWTA are significantly different from
the maps of supervised and are mostly passing the input with
minimal transformation or are dead filters (blank output).
Similarly for Conv2, the GWTA features look close to su-
pervised than normal autoencoder and are more related to
abstracting various types of edges to form compound pat-
terns like shoulders, head etc. It starts to diverge at Conv3,
where the supervised features show more aggregation to be-
come like density maps. But the GWTA unsupervised fea-
ture maps, though not visually very different, still combines
previous layer features to form more abstractions. This is
due to the absence of any task oriented supervisory signal.
Coming to Conv4, the supervised layer activations almost
look like density maps. In contrast, the Conv4 unsupervised
features look very different and still creates many abstrac-
tions which may or may not be useful for the task of crowd



Method MAE MSE
Colorization 168.4 244.5
Inpainting 166.3 252.8

Count Consistency 188.8 282.3
GWTA-CCNN 154.7 229.4

Table 3: Performance of GWTA-CCNN on Part A of Shang-
haitech dataset (Zhang et al. 2016) compared with self-
supervised methods.

counting. This observation that initial layers of neural net-
work have general features, with deeper layers tuned for task
specific features is in line with existing findings in the liter-
ature. Also note that, many feature maps of the autoencoder
without GWTA still have dense information about the input
in order to reduce the reconstruction loss and hence differ
significantly from that of the supervised. This proves that the
GWTA stacked autoencoder learns features close to that of
the supervised model compared to other competing models.

Comparison with Self-Supervised Methods
In this section, we compare the performance of our model
with some self-supervised methods, where the features are
learned by training the model to predict pseudo labels that
are computed from the input image. For example, in self-
supervision with colorization, the CCNN model is trained
as an autoencoder to regress colored image from its gray
scale version. We see from Table 3 that the proposed GWTA-
CCNN works better than self-supervision with colorization
task. Inpainting (Pathak et al. 2016) is another task for self-
supervision. A rectangular portion of the input image is re-
moved and filled with the mean value. The surrounding con-
text image is used to train CCNN with the task of predicting
the missing region of the input. This task also does not sur-
pass the performance of GWTA unsupervised learning. Fur-
ther, to suite the end task of density regression, we employ
the count ranking loss formulation of (Liu, van de Weijer,
and Bagdanov 2018). We train CCNN to be consistent by en-
forcing the count estimation of the interior region of a crowd
image to be less than the overall count of the crowd. Though
the ranking loss provide count consistency, it seems to be
incapable of providing enough good features. This might be
because of the fact that the ranking loss could be satisfied
without learning any crowd discriminative features. This in-
dicates one drawback of self-supervised methods, the need
for certain task (like colorization etc.) suitable for the end
task to be defined. If the task is not compatible with the end
task, performance might suffer.

Effect of labeled data on performance
It is important to examine the dependence of count esti-
mation quality on the amount of labeled data used for fi-
nal supervision. Figure 8 shows performance of our GWTA
counting model with different levels of supervision com-
pared against fully supervised CCNN. On Part A Shang-
haitech dataset, we vary the number of labeled training im-
ages from 50% of the entire dataset to the extremity of just
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Figure 8: Amount of labeled data vs MAE. CCNN is
trained in fully and almost supervised fashion with differ-
ent amounts of labeled data of Part A Shanghaitech dataset.
We see that at less data scenarios our almost unsupervised
approach performs better than fully supervised.

one image. We repeat the experiments eight times with dif-
ferent randomly drawn subset of the labeled data and re-
port the average MAE. Interestingly, we see that the perfor-
mance of GWTA-CNN at extreme less data case is clearly
superior to fully supervised model. Some amount of training
data is required for satisfactory accuracy for fully supervised
case and outperforms GWTA-CCNN at around 40% data.
With more data, though the accuracy of both approaches in-
creases, the MAE for unsupervised method drastically de-
creases than fully supervised and saturates near the 100%
data performance with less data (50%). This is primarily be-
cause the few parameters being updated with supervision re-
quire only limited data for training. Hence the suitability of
our approach at extremely less labeled data scenario is well
emphasized.

Conclusion
Our proposed architecture attempts to train a crowd counting
CNN in an almost unsupervised manner. Since it is difficult
to obtain large-scale annotated data for dense crowds, this
problem deserves prime attention. We develop Grid Winner-
Take-All (GWTA) autoencoder to learn useful features from
unlabeled images. The basic idea is to restrict weight update
of neurons in convolutional output maps to the maximally
activated neuron in a fixed spatial cell. Almost 99.9% of the
parameters of the network are trained as stacked WTA au-
toencoders using unlabeled crowd images, while remaining
parameters are updated with supervision. We evaluate our
model on standard benchmark datasets and demonstrate bet-
ter performance compared to other unsupervised methods.
In fact, the count performance is reasonably close to the
supervised baseline, with a performance gap of 25%. Fu-
ture works should address this performance gap. Additional
analysis reveals that our unsupervised approach outperforms
fully supervised training when available labeled data is less.
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