
BatchOut: Batch-level feature augmentation to improve
robustness to adversarial examples

Akshayvarun Subramanya
Video Analytics Lab

Indian Institute of Science
Bangalore, India

Konda Reddy Mopuri
Video Analytics Lab

Indian Institute of Science
Bangalore, India

R.Venkatesh Babu
Video Analytics Lab

Indian Institute of Science
Bangalore, India

ABSTRACT
Machine Learning models are known to be susceptible to small
but structured changes to their inputs that can result in wrong
inferences. It has been shown that such samples, called adversar-
ial samples, can be created rather easily for standard neural net-
work architectures. These adversarial samples pose a serious threat
for deploying state-of-the-art deep neural network models in the
real world. We propose a feature augmentation technique called
BatchOut to learn robust models towards such examples. The pro-
posed approach is a generic feature augmentation technique that
is not specific to any adversary and handles multiple attacks. We
evaluate our algorithm on benchmark datasets and architectures to
show that models trained using our method are less susceptible to
adversaries created using multiple methods.

CCS CONCEPTS
• Computing methodologies → Machine learning algorithms;
Object recognition;

KEYWORDS
Machine Learning, Convolutional Neural Networks, Adversarial
examples, Feature Augmentation

ACM Reference Format:
Akshayvarun Subramanya, Konda Reddy Mopuri, and R.Venkatesh Babu.
2018. BatchOut: Batch-level feature augmentation to improve robustness to
adversarial examples. In 11th Indian Conference on Computer Vision, Graphics
and Image Processing (ICVGIP 2018), December 18–22, 2018, Hyderabad, India.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3293353.3293387

1 INTRODUCTION
Machine learning models have been shown to be vulnerable to ad-
versarial samples: inputs corrupted with small perturbation specif-
ically optimized to mislead them [4–6, 11, 15]. Szegedy et al. [36]
showed that deep neural networks, despite their impressive per-
formance, are vulnerable to adversarial samples. Later, many Con-
volutional Neural Networks (CNN) based classification models are
shown [11, 18, 23–27] to be fooled by adversarial images. Firstly,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICVGIP 2018, December 18–22, 2018, Hyderabad, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6615-1/18/12. . . $15.00
https://doi.org/10.1145/3293353.3293387

let us define an adversarial image. Let I be an image that is fed to a
classifier whose mapping from images to labels is denoted as f (I).

An adversarial image Î can be defined as

f (Î) =f (I + r) , f (I) (1)

s .t ∥Î − I ∥p ≤ δ

Here, r is the perturbation that is added to the image such that
the output of the classifier changes. There is an added restriction
that Î and I do not differ by more than δ under ℓp norm. Usually, ℓ∞
is considered so that maximum pixel-wise difference is restricted.

Because of the ℓp constraint, adversarial images are often in-
distinguishable from their corresponding original images for hu-
mans. Interestingly, the adversarial images generalize across models
trained with different architectures or different subsets of data [36],
reducing the possibility of using an ensemble of classifiers to counter
them. Kurakin et al. [17] recently showed that these examples can
occur in the physical world by printing the adversarial images and
showed that classifiers are fooled by these samples as well. Black-
box attacks, which involve no knowledge of network parameters,
have also been effective in fooling the classifiers [32].

Susceptibility to these rogue samples can pose a severe prob-
lem for deploying the deep learned models in critical applications.
Multiple attempts have been made to understand and reason the
existence of adversarial samples, viz. exploiting linearity of the
models [11], sparse training data [30], proximity of classification
boundary to the submanifold of sampled data [37] etc. Considering
the severity of the problem, there have been multiple attempts to
reduce the effect and train networks robust to such adversaries. One
of the most popular and effective methods is to train the models
with the adversarial examples in addition to the normal samples.
This method, called Adversarial training [11], uses Fast Gradient
Sign Method (FGSM) to generate adversarial examples at each train-
ing iteration and presents a combination of normal and adversarial
examples to train the network.

We propose a novel feature space augmentation technique that
makes the deep learned models robust to adversarial attacks. We
name our method BatchOut, as it operates on a minibatch of data
and similar to dropout, it randomly selects the samples which are to
be used for augmentation. Our method is a generic training regime
that augments the feature space to achieve smoother predictions.
The advantages of our approach over adversarial training are (i)
it requires no knowledge about the nature of the target adversar-
ial attack and (ii) it does not require computing gradient at each
iteration during training.

https://doi.org/10.1145/3293353.3293387
https://doi.org/10.1145/3293353.3293387

ICVGIP 2018, December 18–22, 2018, Hyderabad, India

(a) (b) (c)

Figure 1: A toy example illustrating the proposed feature augmentation technique. (a) Feature space with five categories before
augmentation. (b) Adversarial directions for a chosen sample x . Note that a sample can choose another sample belonging to
same class. (c) Feature augmentations x∗ are shown for x . Note that the augmented samples x∗ (darker circles) can lie anywhere
along the pointed adversarial directions depending upon the value of η.

2 RELATEDWORK
This section is aimed at highlighting some of the previous works
based on model optimization that attempted to defend neural net-
work architectures against adversarial attacks. The most trivial
and effective method is to use the adversarial examples to during
training. This method called Adversarial Training was proposed
by Goodfellow et al.[11]. They used the Fast Gradient Sign Method
(FGSM) to generate adversarial examples at each iteration of train-
ing and trained the network using them. [21] proposed the PGD
adversarial algorithm which is one of the strongest iterative meth-
ods for fooling. They also showed that training with examples
created using their method can increase robustness significantly.
However, it is to be noted that such methods are computationally
expensive and difficult to scale. Although this method is the most
often used defense against adversaries, it is easy to see that it is
specific to the method of adversarial generation and it is difficult
to scale as well. Recently, Kurakin et al.[18] were able to perform
adversarial training for large networks such as Inception-v3 using
synchronous training across 50 machines. Although many defenses
have been proposed (e.g. [7, 13, 35]), they have been shown to be
suffering from obfuscated gradients [2], and could be circumvented
by making slight changes to the adversary. Our method does not
suffer from this, since at test time, we present only the model with-
out any additional architectural changes. Another work presented
by Papernot et al., called Defensive Distillation [31], similar to [14],
uses two networks with the same number of parameters to perform
training. However, it was shown that such networks too can be
attacked by making small changes to the method of attack [8]. [34]
proposed layerwise training with FGSM adversary as a useful regu-
larization to defend the model. They use gradients from previous
minibatch to perturb current minibatch samples to create adver-
sary. Our approach is different from theirs because we obtain these
directions without computing any gradients.

One of the earliest attempts at increasing model robustness was
by Gu and Rizagio [12]. They came up with Deep Contracive Net-
work (DCN) , which had an explicit regularizer of the form

 ∂X i

∂Xi−1

2

which penalizes large changes in outputs of consecutive layers,
thereby ensuring that the Jacobian of the output of the network
w.r.t the input

(
∂X N

∂X 0

)
is minimized when training the network.

However, this regularizer was shown to restrict the capacity of
the network, showing reduced performance when compared with
vanilla training. Recently, there have been multiple attempts to
detect adversarial examples at test time. Hendrik Metzen et al. [22]
were able to detect adversarial examples with considerable success
using an auxiliary binary classifier which was trained to detect
adversarial examples from different methods[22]. Li et al.[20] were
able to detect L-BGFS adversarial examples by using filter statistics
from different layers of the CNN. Our method attempts to create
robust models without any prior knowledge on the adversary.

3 PROPOSED APPROACH
In this section, we present the proposed approach to train robust
networks against adversaries. First, we define the notation that will
be used throughout the paper.

Consider a Convolutional Neural Network (CNN) consisting of
N layers where the N th layer’s output is the softmax distribution
over classes. Let D represent the training data with images and
corresponding labels. X i ∈ Rd denotes the set of activations for
mini-batch of size m at the i-th layer in the network where i ∈
[1, 2, ...,N].X 0 represents the images from the data distributionD.
x ij = X i [j] where j ∈ [1,m] denotes the jth sample’s activation
in the minibatch at the ith layer of the network.

Our method is based on the fact that the landscape of learnt
representations is not smooth. Deep Neural Networks learn by
projecting the data onto high dimensional spaces using non-linear
operations. However, the dimensions of these spaces are typically
of the order of thousands, which means that the data used to train

BatchOut: Batch-level feature augmentation to improve robustness to adversarial examplesICVGIP 2018, December 18–22, 2018, Hyderabad, India

Algorithm 1 BatchOut

Input: Activations of a mini-batch at the i-th layer X i , Magnitude of augmentation η and number of samples to be augmented k
R← RandInt(m) // Samplem integers from [1, m] with replacement
X i
r ← X i [R] //Choose a random sample from minibatch

d ← X i
r − X

i // Compute the direction of perturbation
X i [1 : k] ← X i [1 : k] + η · d[1 : k] // Augment and replace the first k samples with the corresponding augmented samples

Output: X i

the network usually occupies a very small subspace. But, owing
to efficient optimization procedures, networks end up learning
the mapping onto these low-dimensional subspaces, where the
generalization to validation and test sets is preserved. But these
procedures do not result in smooth manifolds, which is exploited
by adversaries.

There have been multiple attempts to demonstrate this uneven
nature of the representations of the adversarial and their corre-
sponding clean images. Recently, Sabour and Cao et al.[33] showed
that representations learnt by deep networks can be manipulated
adversarially to fool the classifier. They demonstrated that it is
plausible for images to be close in ℓ∞ sense, but their correspond-
ing representations are far according to ℓ2 distance. This, along
with the definition of adversarial images show that the distances
in image space and feature space should be interpreted differently.
The inter-image and inter-feature distances, when analyzed can be
counter intuitive by nature. We can understand these adversarial
samples as adding a small perturbation in the image space to the
original sample such that it results in large changes in their repre-
sentations. Owing to this, multiple methods exploit the gradients to
change the output of the classifier with minimal perturbation in the
image space. Different methods such as Fast Gradient Sign Method
[11] and DeepFool [23] construct these adversaries in one-step or
iterative fashion by using optimization procedures which result
in these changes. These methods try to perturb the sample in the
feature space such that the original sample is displaced along the
direction of other classes. DeepFool explicitly does this by finding
the nearest decision boundary to augment the sample x such that
it is perturbed towards the other side of the boundary.

To overcome these adversaries and to provide an attack-agnostic
method of robustifying the network, we add small perturbations to
the learned representations of images during training itself. This
ensures that they compensate for the adversaries that can occur
during test time. In [12, 36], the authors have demonstrated that
training with Gaussian noise added to the images is not sufficient
to compensate these adversaries. There is also the possibility of
adding Gaussian noise to the learned representations to realize the
same objective. However, we found that this too did not improve
the performance on adversaries. This can be attributed to the fact
that added noise is not strong enough since it has no knowledge of
the subspace that is learnt by the network. In Adversarial training,
this perturbation is added by the FGSM method using gradients.
However, in our method we propose to directly augment the repre-
sentations such that they are perturbed along the samples of other
classes, i.e we add perturbations in the representation space as a
function of the representations themselves.

Hence we define our feature augmentation procedure for a sam-
ple x j in the ith layer of the network as follows.

x i
∗

j = x ij + η · (x ir − x
i
j) (2)

where x ir = Xi [R] and R ∼ U(1,m).

U(a,b) represents a discrete uniform distribution between [a,b].
For a sample x that belongs to a particular class, all other cat-

egories become adversarial to it. In order to perturb the sample
x ij , we need to add the perturbation such that it moves in this ad-
versarial direction. The second term in Equation 2 represents this
perturbation. The term x ir is obtained by sampling from mini-batch
Xi in a uniform manner. Intuitively, the term (x ir − x ij) represents
the perturbations added to x ij such that it is perturbed towards
x ir . The parameter η determines how far it is perturbed along that
direction.

To illustrate our algorithm, let us consider a toy example where
each class corresponds to single Gaussian with corresponding µ
and σ . Figure 1(a) shows an example distribution with five classes.
Each of the big circles (light colored) denotes subspace occupied
by one class and the smaller circles within them represent the
representations of the data belonging to that class. The adversarial
directions for a data sample x in the projection space are vectors
that connect x to arbitrary samples of other categories. Figure 1(c)
shows the proposed augmentation for a sample x . Note that there
are five semantic classes in the toy example and four augmentations
(x∗) shown. Because of the augmentation, we can observe the part
of distribution corresponding to x ’s semantic category (blue region)
changes as shown in figure 1(c). Also, it might happen that, as a
result of random sampling, some samples might get augmented in
the direction of samples belonging to the same category. In that
case, it can be interpreted as a simple intra-class augmentation
similar to label preserving data augmentation [9]. The proposed
method is presented as an algorithm in Algorithm 1.

4 DISCUSSION
Here, we try to analyze the effectiveness of our method against
adversaries. One question that arises about the proposed method
is how to interpret the augmented features? Bengio et al.[3, 28]
showed that representations are untangled better as we go deeper
into the network. They showed that convex combination of samples
at higher levels of representation leads to plausible looking input
images. Rewriting equation (2),

x∗i = xi + η · (xri − xi) = (1 − η) · xi + η · xr (3)

We can see that our feature augmentation also achieves the same
objective. Hence, the augmented features from our method can

ICVGIP 2018, December 18–22, 2018, Hyderabad, India

0.1 0.2 0.3 0.4 0.5

epsilon

0

20

40

60

80

100

T
e

s
t

A
c
c
u

ra
c
y

Baseline Model

Adversarially Trained

Proposed

FGSM

1 2 3 4 5

No. of iterations

0

20

40

60

80

100

T
e

s
t

A
c
c
u

ra
c
y

Baseline Model

Adversarially trained

Proposed

DeepFool

Figure 2: Test accuracies for the network trained onMNIST against FGSM and DeepFool attacks. We observe that the proposed
BatchOut trained network is robust to both adversarial attacks.

be understood as features that would have been generated from
images that are slight variations of the two corresponding images.
In Adversarial Training, we create adversarial images at each itera-
tion using the FGSM method, yielding adversarial images that are
variations of the training data. Our method can also be understood
as computing adversaries in feature space using the augmentation
method described in Equation 2. Hence, we see an improved perfor-
mance on adversaries generated using both FGSM and DeepFool
methods as shown in section 6.

Another way to understand the efficacy of our method is by relat-
ing to the concept of Deep Contractive Networks (DCN) presented
by Gu and Rizagio et al.[12]. They proposed an explicit regularizer
that would penalize the Jacobian of consecutive layers, thereby
minimizing the Jacobian of the entire network. They also reasoned
that such a regularizer would ensure gradients to the network re-
main as smooth as possible. The main drawback of their method,
as described in section 2, is that this places a hard constraint on the
network which leads to reduction in performance on clean data. In
our method, we are indirectly making the feature space smooth by
creating these augmented samples around the training data. This
comes with the additional benefit of not placing any kind of re-
striction on the network and ensures that sensitivity of network’s
predictions near the training data is decreased. By performing this
augmentation at multiple layers, our method can be interpreted as
trying to reduce the irregularity in learned representations at all
layers of the network.

5 METHODS OF ATTACK
In this paper, we evaluate the robustness of networks under two
different forms of attack. First one, is the Fast Gradient Sign Method
(FGSM) proposed by Goodfellow et al.[11] and DeepFool proposed
by Moosavi-Dezfooli et al.[23]. The following subsections present
a brief introduction to these methods.

5.1 Fast Gradient Sign Method(FGSM)
Fast Gradient Sign Method, as the name suggests, is one of the
fastest and easiest ways of constructing adversaries. This method
involves performing gradient ascent on the Loss function such
that the loss for the correct class increases, thereby decreasing the
model’s confidence towards the predicted class. If J (θ , I ,y) repre-
sents the loss function used to train the network,

Î = I + ϵ · sign(∇I J (θ , I ,ytrue)) (4)

Here, ∇I J (θ , I ,ytrue) represents the gradient of Loss function w.r.t
the image I . It is easy to see that ϵ , which determines the magnitude
of perturbation added, is a result of placing an ℓ∞ constraint as
described in Equation 1.

5.2 DeepFool
DeepFool is an adversary which iteratively generates adversarial
examples for an image I . They use the pre-softmax representations
to determine the nearest decision boundary to perturb the original

BatchOut: Batch-level feature augmentation to improve robustness to adversarial examplesICVGIP 2018, December 18–22, 2018, Hyderabad, India

1/255 2/255 3/255 4/255 5/255

epsilon

30

40

50

60

70

80

T
e

s
t

A
c
c
u

ra
c
y

Baseline Model

Adversarially trained

Proposed

FGSM

1 2 3 4 5

No. of iterations

0

20

40

60

80

100

T
e

s
t

A
c
c
u

ra
c
y

Baseline model

Adversarially trained

Proposed

DeepFool

Figure 3: Test accuracies for the network trained on CIFAR-10 against FGSM and DeepFool attacks. Note that the baseline
network suffers the most and the adversarially trained network suffers more for DeepFool attack. The proposed BatchOut
trained network is robust to both the attacks.

sample. Iteratively, they perturb the input until it crosses that deci-
sion boundary, thereby creating an adversarial example. DeepFool
can be used with any of ℓp constraints, but in our experiments we
use ℓ2 norm to create these samples. DeepFool has been shown to
be minimalistic in the strength of perturbations required to create
the adversarial image Î .

6 EXPERIMENTS
In this sectionwe demonstrate the effectiveness of the proposed aug-
mentation technique to handle the multiple adversarial attacks via
training classifiers on different datasets. In particular, we consider
MNIST [19] and CIFAR-10 [16] datasets and evaluate on adversaries
described above.

6.1 Implementation details
In all our experiments, we implement the algorithm presented in
Algorithm 1. We have implemented the proposed augmentation as
a layer operation in Tensorflow[1] and Lasagne, a Theano based
framework [10, 38] to evaluate our method. To address the question
of gradient computation for our layer, we do not pass the gradient
through the network for the branch that computes the perturba-
tion1, i.e., second half in Equation (2)

[
η(x ir − x

i
j)
]
. This is done so

1This can be done using tf.stop_gradient in Tensorflow and
theano.gradient.disconnected_grad in Theano

that a layer i continuosly generates the augmentation that is fed as
input to layer (i + 1) and by stopping the gradient, the layer i + 1
has no knowledge about the branch computing our augmentation.
Essentially, we are ensuring that the layer (i + 1) get its input x∗
such that it is output of layer i directly, not as a result of our aug-
mentation. Stopping the gradient can be seen as considering the
augmentation branch as constant during backpropagation, even
though it is a function of the previous layer’s inputs. We observed
that if we do not perform this operation, the network learnt to undo
the operation performed by our augmentation, thereby reducing its
effectiveness. During inference, we do not perform the proposed
augmentation and the original activations are passed without aug-
mentation. All operations described in our approach are done on
pre-relu activations. In all our experiments we fixed the value of
k as half of the minibatch size. That is, during training, at each
iteration, 50% of the minibatch samples are augmented. We created
the test adversarial samples from FGSM method using the earlier
version of cleverhans library [29] which supported Theano. We
evaluate our method on different adversaries similar to [22]. The
hyperparameters were chosen based on the performance on the
held out validation set.

ICVGIP 2018, December 18–22, 2018, Hyderabad, India

0 50 100 150 200 250 300

epoch

0

1

2

3

T
ra

in
in

g
 l
o

s
s

Baseline

Proposed

(a)

C1 C2 F1 [C1 + C2] [C1 + F1] [C2 + F1] ALL

Layers

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Normal samples

Adversarial samples

(b)

Figure 4: (a) Time of convergence baseline model and model with proposed augmentation trained on CIFAR-10. (b) Effect of
performing the proposed augmentation at different layers.

6.2 MNIST
We trained a CNN which consists of 2 convolution layers and a
fully connected layer 2 using MNIST data. We first train the CNN
without any augmentation and obtain a model referred as Baseline
model, which achieves a classification accuracy of 99.47% on the
test set. We then train a new model with the same architecture
but perform adversarial training as discussed in [11], i.e during
training, at each iteration, half of the images in the mini-batch are
replaced by their corresponding FGSM adversarial images com-
puted over the same network at that instant of training. This is
referred as Adversarially trained model. This network achieved
a classification accuracy of 99.31% on the test set. Lastly, we train a
third model with the same architecture but perform the proposed
feature augmentation at all the layers. That is, the CNN now has
an additional BatchOut layer per each layer. This network achieves
a test accuracy of 99.12% and is referred to as Proposed model.

We test the robustness of all the above three networks towards
adversarial attacks. We compute FGSM and DeepFool adversarial
images corresponding to the test set for the three models sepa-
rately and test their classification performance. Figure 2 shows
the achieved classification accuracies. For evaluating using Fast
Gradient Sign Method, we create adversaries of varied strength
using the parameter ϵ . We evaluated against DeepFool iterative
attack for multiple iterations (1 to 5). As expected, the accuracy
of baseline network falls drastically with increase in the strength
of the adversary. Adversarial trained network shows robustness
to FGSM examples and performs better than the baseline network
on DeepFool examples. However, the proposed approach is clearly
robust to both adversaries, even though it was not trained with ex-
amples from either attack, highlighting the attack-agnostic nature
of our method. Note that the proposed method achieves robustness
to attacks with negligible drop in the accuracy over clean images.
6.3 CIFAR-10
For CIFAR-10 dataset we use a VGG style architecture to classify
the images. The network consists of 5 convolution layers and 2
fully connected layers. Similar to the MNIST scenario, we obtain
three separate models. The Baseline model achieves 80.22%, the
Adversarially Trainedmodel achieves 80.01% and theProposed
2Please refer appendix for exact details regarding the architecture

model achieves 80.79% on the original test set. The only change
we employ here is that the η values are sampled from U[0,N],
where N is chosen for each Batchout layer. This can be seen as
varying the magnitude of noise and thereby, exploring more points
in the high-dimensional subspace. Figure 3 shows the classification
accuracies obtained on adversarial images crafted from the 10K test
set images. We evaluated our approach with FGSM and DeepFool
adversaries for varied strengths. Note that the normal network is
susceptible to both the attacks and fails to recognize the objects
correctly. Adversarially trained network is robust to only the FGSM
attacks and suffers for DeepFool attacks. On the other hand, as
observedwithMNIST dataset, our approachmakes themodel robust
to multiple attacks without losing accuracy on normal images.

6.4 Time of Convergence
Here we present the time of convergence for baseline training and
training with the proposed feature augmentation with the network
we train for CIFAR-10 dataset. Figure 4(a) shows decrease in loss
as the training progresses. It is clearly observed that our method
does not affect the convergence of the model compared to baseline
training, showing that there is no change in hyper-parameters
such as learning rate, optimizer etc. is required when using our
algorithm.

6.5 Augmenting at different layers
In this section we present the effect of performing the proposed
augmentation at different layers in the network trained on MNIST.
Figure 4(b) shows the classification accuracy on FGSM examples
with ϵ = 0.3 obtained by the network when we perform our aug-
mentation at different individual layers and combinations of them.
Ci denote ith convolution layer and F1 denotes the fully connected
layer. The network consists of two convolution layers and one fully
connected layer. The figure shows the accuracies over normal and
FGSM adversarial images from the 10K test images of the dataset.
It is clearly observed that the performance on adversarial examples
increases as we apply our algorithm to combination of layers simul-
taneously. The best performance was achieved when augmentation
was performed at all layers of the network. This can be attributed
to the fact that reducing the sensitivity at multiple layers of the

BatchOut: Batch-level feature augmentation to improve robustness to adversarial examplesICVGIP 2018, December 18–22, 2018, Hyderabad, India

0 0.2 0.4 0.6 0.8 1

k

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
.

Effect of ḱ ´

Normal samples

FGSM (eps=0.4)

(a)

0.1 0.2 0.3 0.4 0.5

epsilon for FGSM

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
.

Random noise vs. BatchOut

Random Noise

BatchOut

(b)

Figure 5: (a) Effect of k , the fraction ofmini-batch samples augmented via Batchout tomake the network robust.We notice that
the classification accuracy on MNIST data peaks at k = 0.5 and is selected across multiple other experiments. (b) Comparison
of Batchout augmentation with that of Gaussian randomnoise. It can be clearly observed that adding structured perturbations
during training is a better alternative to adding random unstructured noise.

network can result in better robustness to adversaries. Note that,
when applied to the single fully connected layer, it performed better
than the combination of convolution layers. This shows that as the
representations are more untangled, our augmentation shows better
variations in data. This leads to presenting more possibilities in
input data, thus increasing the robustness of the network.

6.6 Effect of the hyperparameter k
One of the important hyperparameters of the proposed method is
k , which is the fraction of the minibatch to be augmented using the
proposed method. Here we seek to investigate the effect of varying
this hyperparameter. We observe the accuracy for MNIST data on
normal test samples and their FGSM adversarial counterparts for
ϵ = 0.4. As observed in Fig. 5 (a), we see that as k increases, the
accuracy on normal samples gradually decreases and accuracy on
adversarial samples shows improvement. We notice that k = 0.5
strikes the right balance between both measures, which is to be
expected since k = 0.5 corresponds to equal number of clean and
augmented samples in the minibatch. Hence we set k = 0.5 in all
our reported results.

6.7 Random noise baseline
Our method can be understood as adding small and structured
perturbation in feature space during training such that the network
becomes robust to adversaries. In order to bring out the efficiency
of the proposed approach, we conducted an experiment where
we add random Gaussian noise as perturbation to the minibatch
samples and compare it with the proposed method. To have a fair
comparison with our method, we added the similar magnitude of
perturbation in both cases.

x i
∗

j = x ij + η ·

(x ij)

2 · n

∥(n)∥2
(5)

where n ∼ N(0, 1).

As shown in Fig. 5(b), the proposed method clearly outperforms
the random noise augmentation, indicating that the proposed fea-
ture augmentation which is a function of the representations, is
structured and leads to better robustness to adversaries.

7 CONCLUSION
We have proposed a novel feature augmentation technique that
enables training neural network architecture robust to adversaries.
Our method works in an attack agnostic manner, which results in
improved performance on multiple adversaries, whilst maintaining
the performance on clean test examples. Our algorithm can be easily
implemented in any deep learning framework as an easy-to-use
layer operation. We empirically demonstrate the effectiveness of
our method by training neural network architectures on benchmark
datasets and showing robustness to fooling methods.

8 APPENDIX
8.1 Network Architectures
Here we provide the architecture details of networks that are pre-
sented in Experiments section. Note that Conv(w,w, ch, s) repre-
sents Convolution layer with ch filters withw×w spatial resolution
and perform convolution with stride s . BatchOut is the proposed
Batch level Augmentation Feature Augmentation Layer. FC(ch) de-
notes the fully connected layer with ch neurons. k denotes the %
of minibatch samples that are augmented. Note that value of η is
mentioned at each of the BatchOut layer.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
arXiv preprint arXiv:1802.00420 (2018).

[3] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai. 2013. Better
mixing via deep representations. In International Conference on Machine Learning.
552–560.

[4] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 387–402.

[5] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2014. Pattern recognition systems
under attack: Design issues and research challenges. International Journal of
Pattern Recognition and Artificial Intelligence 28, 07 (2014), 1460002.

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

ICVGIP 2018, December 18–22, 2018, Hyderabad, India

Table 1: The architecture details of the network trained on
MNIST datastet.

MNIST k η

Conv (5, 5, 32,1)
BatchOut 0.5 0.05
ReLU

MaxPool(2,2,2)
Conv (5, 5, 32,1)

BatchOut 0.5 0.1
ReLU

MaxPool(2,2,2)
Dropout(0.5)
FC (256)
BatchOut 0.5 0.1
ReLU

Dropout(0.5)
SoftMax(10)

Table 2: The architecture details of the network trained on
CIFAR-10 datastet. U[] denotes the continuos uniform dis-
tribution.

CIFAR-10 k η

Conv(3, 3, 32,1)
BatchOut 0.5 U[0, 0.1]
ReLU

Conv(3, 3, 64,1)
BatchOut (0.5, 0.1) 0.5 U[0, 0.1]

ReLU
MaxPool(2,2,2)
Conv(3, 3, 64,1)
BatchOut(0.5,0.1) 0.5 U[0, 0.1]

ReLU
Conv(3, 3, 64,1)
BatchOut(0.5,0.1) 0.5 U[0, 0.1]

ReLU
Conv(3, 3, 64,1)
BatchOut(0.5,0.1) 0.5 U[0, 0.15]

ReLU
MaxPool(2, 2, 2)
Dropout(0.5)
FC (512)
BatchOut 0.5 U[0, 0.15]
ReLU

FC (512)
BatchOut 0.5 U[0, 0.15]
ReLU

Dropout(0.5)
SoftMax(10)

[7] Vivek B.S., Konda Reddy Mopuri, and R. Venkatesh Babu. 2018. Gray-Box Adver-
sarial Training. In the European Conference on Computer Vision (ECCV).

[8] Nicholas Carlini and David Wagner. 2016. Defensive distillation is not robust to
adversarial examples. arXiv preprint arXiv:1607.04311 (2016).

[9] Terrance DeVries and Graham W Taylor. 2017. Dataset Augmentation in Feature
Space. arXiv preprint arXiv:1702.05538 (2017).

[10] Sander Dieleman, Jan SchlÃĳter, Colin Raffel, Eben Olson, SÃÿren Kaae SÃÿn-
derby, Daniel Nouri, et al. 2015. Lasagne: First release. (Aug. 2015). https:
//doi.org/10.5281/zenodo.27878

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
Harnessing Adversarial Examples. CoRR abs/1412.6572 (2014).

[12] Shixiang Gu and Luca Rigazio. 2014. Towards deep neural network architectures
robust to adversarial examples. arXiv preprint arXiv:1412.5068 (2014).

[13] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. 2017.
Countering adversarial images using input transformations. arXiv preprint
arXiv:1711.00117 (2017).

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[15] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and
J. D. Tygar. 2011. Adversarial Machine Learning. In Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence (AISec ’11).

[16] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
(2009).

[17] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples
in the physical world. arXiv preprint arXiv:1607.02533 (2016).

[18] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2016. Adversarial Machine
Learning at Scale. CoRR abs/1611.01236 (2016).

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[20] Xin Li and Fuxin Li. 2016. Adversarial Examples Detection in Deep Networks
with Convolutional Filter Statistics. arXiv preprint arXiv:1612.07767 (2016).

[21] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[22] Jan H. Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. 2017. On
Detecting Adversarial Perturbations. ICLR (2017).

[23] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. in
CVPR (2016).

[24] Konda Reddy Mopuri, Aditya Ganeshan, and R. Venkatesh Babu. 2018. Generaliz-
able Data-free Objective for Crafting Universal Adversarial Perturbations. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2018).

[25] Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu. 2017. Fast Feature
Fool: A data independent approach to universal adversarial perturbations. In
Proceedings of the British Machine Vision Conference (BMVC).

[26] Konda Reddy Mopuri, Utkarsh Ojha, Utsav Garg, and R Venkatesh Babu. 2018.
NAG: Network for Adversary generation. In Proceedings of the IEEE Computer
Vision and Pattern Recognition (CVPR).

[27] Konda Reddy Mopuri, Phani Krishna Uppala, and R. Venkatesh Babu. 2018. Ask,
Acquire, and Attack: Data-Free UAP Generation Using Class Impressions. In the
European Conference on Computer Vision (ECCV).

[28] Sherjil Ozair and Yoshua Bengio. 2014. Deep directed generative autoencoders.
arXiv preprint arXiv:1410.0630 (2014).

[29] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and Patrick
McDaniel. 2016. cleverhans v1.0.0: an adversarial machine learning library. arXiv
preprint arXiv:1610.00768 (2016).

[30] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 372–387.

[31] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 582–597.

[32] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. 2016. Practical Black-Box Attacks against Deep
Learning Systems using Adversarial Examples. CoRR abs/1602.02697 (2016).

[33] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J Fleet. 2015. Adversarial
manipulation of deep representations. arXiv preprint arXiv:1511.05122 (2015).

[34] Swami Sankaranarayanan, Arpit Jain, Rama Chellappa, and Ser Nam Lim. 2017.
Regularizing deep networks using efficient layerwise adversarial training. arXiv
preprint arXiv:1705.07819 (2017).

[35] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman.
2017. Pixeldefend: Leveraging generative models to understand and defend
against adversarial examples. arXiv preprint arXiv:1710.10766 (2017).

[36] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
CoRR abs/1312.6199 (2013). http://arxiv.org/abs/1312.6199

[37] Thomas Tanay and Lewis Griffin. 2016. A Boundary Tilting Persepective on the
Phenomenon of Adversarial Examples. arXiv preprint arXiv:1608.07690 (2016).

[38] Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).
http://arxiv.org/abs/1605.02688

https://doi.org/10.5281/zenodo.27878
https://doi.org/10.5281/zenodo.27878
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1605.02688

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Discussion
	5 Methods of Attack
	5.1 Fast Gradient Sign Method(FGSM)
	5.2 DeepFool

	6 Experiments
	6.1 Implementation details
	6.2 MNIST
	6.3 CIFAR-10
	6.4 Time of Convergence
	6.5 Augmenting at different layers
	6.6 Effect of the hyperparameter k
	6.7 Random noise baseline

	7 Conclusion
	8 Appendix
	8.1 Network Architectures

	References

